
HP MPI User’s Guide

Third Edition

B6011-96008 (M)

B6011-90001 (C)

June 1998

Edition: Third

B6011-90001
Remarks: Released with HP MPI V1.4, June, 1998.

Edition: Second

B6011-90001
Remarks: Released with HP MPI V1.3, October, 1997.

Edition: First

B6011-90001
Remarks: Released with HP MPI V1.1, January, 1997.

Notice

Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance
or use of this material.

Parts of this book came from Cornell Theory Center’s web document.
That document is copyrighted by the Cornell Theory Center.

Parts of this book came from MPI: A Message Passing Interface. That
book is copyrighted by the University of Tennessee. These sections were
copied by permission of the University of Tennessee.

Parts of this book came from MPI Primer/Developing with LAM. That
document is copyrighted by the Ohio Supercomputer Center. These
sections were copied by permission of the Ohio Supercomputer Center.

Table of Contents iii

Contents

Preface . xi
HP MPI features . xii
System platforms . xiv
Notational conventions .xv
Associated Documents . xvi
Credits . xvii

1 Introduction . 1

Parallel computational models .2
Message passing .3
MPI concepts .4

Point-to-point communication .6
Communicators .6
Sending and receiving messages .7

Collective operations .10
Communication .10
Computation .13
Synchronization. .13

MPI datatypes. .14
Multilevel parallelism .16
Advanced topics .17

2 Getting started . 19

Configuring your environment .20
Building and running your first application .21

Building and running on a single host .22
hello_world output. .22

Building and running on multiple hosts .22
hello_world output. .23

iv Table of Contents

3 Understanding HP MPI. 25

MPI 2.0 Features . 26
MPI I/O . 26
Language interoperability . 28
Thread-compliant library . 29
One-sided communication . 32
Miscellaneous features . 32

Directory structure. 34
Compiling applications . 36

64-bit support . 37
Running applications . 38

Types of applications. 38
Running SPMD applications. 38
Running MPMD applications . 39

Multiprotocol messaging. 40
Run-time environment variables . 42

MPI_FLAGS. 43
MPI_DLIB_FLAGS . 45
MPI_MT_FLAGS . 45
MPI_GLOBMEMSIZE. 46
MPI_TOPOLOGY . 47
MPI_SHMEMCNTL . 48
MPI_TMPDIR . 48
MPI_XMPI . 49
MPI_WORKDIR. 50
MPI_CHECKPOINT . 50
MPI_INSTR . 51
MPI_COMMD . 52
MPI_LOCALIP. 53
MP_GANG . 53

Run-time utility commands . 54
mpirun . 55
mpijob . 59
mpiclean . 60
xmpi . 61
mpiview . 62

Communicating using daemons . 62
Assigning hosts using LSF . 64

Table of Contents v

4 Profiling . 65

Using counter instrumentation .66
Creating an instrumentation profile .66
Viewing the human-readable format .67
Using mpiview .70

Using XMPI .71
Working with postmortem mode .72

Creating a trace file. .72
Viewing a trace file .73

Working with interactive mode .83
Running an appfile .83
Changing default settings and viewing options 88

Using CXperf .92
Using the profiling interface .93

5 Tuning . 95

General tuning. .96
Message latency and bandwidth .96
Multiple network interfaces. .98
Processor subscription .99
MPI routine selection .100

SPP-UX platform tuning .101
Multilevel parallelism .101
Process placement .101
Topology optimization .105

6 Debugging and troubleshooting . 107

Debugging HP MPI applications .108
Using the Diagnostics Library. .109

Troubleshooting HP MPI applications .110
Building. .110
Starting .110
Running. .111

Propagation of environment variables .111
Shared memory .111
Interoperability .112
Message buffering .112
External input and output .113
Fortran 90 programming features .114
UNIX open file descriptors .114

Completing .115
Frequently asked questions .116

vi Table of Contents

Appendix A: Example applications . 119

send_receive.f . 121
send_receive output . 122

ping_pong.c . 123
ping_pong output . 125

compute_pi.f . 126
compute_pi output. 127

master_worker.f90 . 128
master_worker output . 129

cart.C. 130
cart output . 133

communicator.c . 134
communicator output . 134

multi_par.f . 135
io.c . 145

io output. 146
thread_safe.c. 147

thread_safe output . 149

Appendix B: XMPI resource file. 151

Glossary . 153

Index . 159

List of Figures vii

Figures

 Figure 1 MPI broadcast operation. .11
 Figure 2 MPI scatter operation .11
 Figure 3 Multiprotocol messaging with an X-Class server .40
 Figure 4 Multiprotocol messaging with a V2200 server. .41
 Figure 5 Daemon communication .63
 Figure 6 Multiple network interfaces .99
 Figure 7 Default process placement .103
 Figure 8 Optimal process placement .104
 Figure 9 Array partitioning .136

viii List of Figures

List of Tables ix

Tables

Table 1 Six commonly used MPI routines .5
Table 2 MPI blocking and nonblocking calls .9
Table 3 Language interoperability conversion routines .28
Table 4 HP MPI library usage .29
Table 5 Thread-initialization values .30
Table 6 Thread-support levels .31
Table 7 Organization of the /opt/mpi directory .34
Table 8 Man page categories .35
Table 9 Compilation utilities .36
Table 10 Compilation environment variables .36
Table 11 Subscription types .99
Table 12 Run invocations that support stdin .113
Table 13 Example applications shipped with HP MPI .119

x List of Tables

Preface xi

Preface

This guide describes the HP MPI 1.4 implementation of the Message
Passing Interface (MPI) standard. The guide helps you use HP MPI to
develop and run parallel applications.

You should already have experience developing UNIX applications. You
should also understand the basic concepts behind parallel processing and
be familiar with MPI.

This guide is intended to supplement the MPI 1.2 and 2.0 standards.
MPI: The Complete Reference (http://www.netlib.org/utk/papers/mpi-
book) describes the MPI 1.1 standard. You can access the HTML version
of the MPI 2.0 standard at http://www.mpi-forum.org.

An HTML version of this guide is provided with HP MPI. See “Directory
structure” on page 34 for more information.

Some sections in this book contain command-line examples used to
demonstrate HP MPI concepts. These examples use the /bin/csh syntax
for illustration purposes.

xii Preface

Preface
HP MPI features

HP MPI features
HP MPI provides a wide range of features that offer you flexibility in
developing parallel applications. These features include:

• Compliance with the MPI 1.2 standard. Support for a subset of the
MPI 2.0 standard including:

• Language interoperability—Allows you to write mixed-language
applications or applications that call library routines written in
another language.

• MPI I/O—Supports I/O operations for large files (>2 Gbytes).

• One-sided communication—Separates the transfer of data from
process synchronization. This is best for applications with
dynamically changing data access patterns where data
distribution is fixed or slowly changing.

• Thread compliance—Allows concurrently running threads in a
process to make MPI calls as if the calls are executed in some kind of
order.

• Single program multiple data (SPMD) and multiple program multiple
data (MPMD) styles of programming—Allow you to create an
application that consists of a single program that is executed by each
process or two or more programs where each process can execute a
different program. In both cases, processes normally act on different
data.

• Profiling—Supports process tracing and monitoring using XMPI and
counter instrumentation for collecting cumulative application
statistics. A new utility, mpiview, allows you to view counter
instrumentation data in graphical format.

• Multiprotocol support—Supports different communication protocols
depending upon where the processes are located and what type of
platform is used. The supported protocols include shared memory
within a host and TCP/IP between hosts.

• Data mover—Accelerates messaging on scalable servers running
under SPP-UX.

• Compliance with the UNIX 95 standard.

Preface xiii

Preface
HP MPI features

• Derived datatypes—Supports optimized collection and
communication of derived datatypes.

• Integration with Platform Computing’s Load-Sharing Facility
product.

• Daemon—Improves application scalability by optionally using
daemons for all off-host communication.

• Gang scheduling—Schedules processes as a gang if gang scheduling
is enabled.

• Support for 32- and 64-bit libraries.

• Optimization of MPI topology creation functions.

• Diagnostics library—Provides advanced run-time error checking and
analysis.

xiv Preface

Preface
System platforms

System platforms
HP MPI runs under HP-UX 10.20 and 11.0. It also runs under
SPP-UX 5.x.

The HP-UX operating system is used on:

• Workstations: s700 series B-, C-, and J-Class

• Midrange servers: s800 series D- and K-Class

• High-end servers: V-Class.

The SPP-UX operating system is used on:

• SPP1600 servers (single- and multi-hypernode)

• S-Class servers

• X-Class servers

Preface xv

Preface
Notational conventions

Notational conventions
This section describes notational conventions used in this book.

NOTE A note highlights important supplemental information.

bold monospace In command examples, bold monospace
identifies input that must be typed exactly as
shown.

monospace In paragraph text, monospace identifies
command names, system calls, and data
structures and types. In command examples,
monospace identifies command output,
including error messages.

italic In paragraph text, italic identifies titles of
documents. In command syntax diagrams,
italic identifies variables that you must
provide. The following command example
uses brackets to indicate that the variable
output_file is optional:

commandinput_file [output_file]

Brackets ([]) In command examples, square brackets
designate optional entries.

xvi Preface

Preface
Associated Documents

Associated Documents
Associated documents include:

• MPI: The Complete Reference, published by MIT Press

• Parallel Programming Guide for HP-UX Systems

• CXperf User’s Guide

• CXperf Command Reference

The table below shows World Wide Web sites that contain additional
MPI information.

Access To learn more about

http://www.hp.com/go/mpi Hewlett-Packard’s HP MPI web page

http://www.mpi-forum.org Official site of the MPI forum

http://www.mcs.anl.gov/Projects/mpi/index.html Argonne National Laboratory’s
MPICH implementation of MPI

http://www.osc.edu/lam.html Ohio Supercomputer Center’s LAM
implementation of MPI

http://www.erc.msstate.edu/mpi/ Mississippi State University’s MPI
web page

http://www.tc.cornell.edu/Edu/Tutor/MPI/ Cornell Theory Center’s MPI tutorial
and lab exercises

http://www.mcs.anl.gov/home/thakur/romio Argonne National Laboratory’s
implementation of MPI I/O

Preface xvii

Preface
Credits

Credits
HP MPI is based upon MPICH from Argonne National Laboratory and
Mississippi State University and LAM from Ohio Supercomputing
Center.

The XMPI utility is based upon LAM’s version, available at
http://www.osc.edu/lam.html.

HP MPI includes ROMIO, a portable implementation of MPI I/O
developed at the Argonne National Laboratory.

xviii Preface

Preface
Credits

Chapter 1 1

1 Introduction

This chapter provides introductory information about MPI. The topics
covered include:

• Parallel computational models

• Message passing

• MPI concepts

2 Chapter 1

Introduction
Parallel computational models

Parallel computational models
Computational models represent a way to look at the types of operations
that are available to parallel applications.

These models are independent of the underlying hardware. They can be
implemented on any machine designed to run parallel applications.
Model performance, however, depends on how optimally a model is
implemented on a particular hardware architecture.

The models are categorized by how memory is used (shared versus
distributed) and how communication occurs (software versus hardware).

The models include:

• Shared memory—Each process can access a shared address space.

• Message passing—An application runs as a collection of autonomous
processes, each with its own local memory.

• Remote memory operations—A local process accesses the memory of a
remote process without aid from the remote process. The local process
accesses this memory explicitly, not the way it accesses its local
memory.

• Threads—In a multithreaded process, the values of application
variables are shared by all the threads.

Chapter 1 3

Introduction
Message passing

Message passing
In message passing, a parallel application consists of a number of
processes that run concurrently. Each process has its own local memory
and communicates with other processes by sending and receiving
messages. When data is passed in a message, the sending and receiving
processes must work to transfer the data from the local memory of one to
the local memory of the other.

Message passing is one of the most popular computation models for
designing parallel applications. The advantages of using message
passing include:

• Portability—Message passing is implemented on most parallel
platforms.

• Universality—Model makes minimal assumptions about underlying
parallel hardware. Message-passing libraries exist on computers
linked by networks and on shared and distributed multiprocessors.

• Simplicity—Model supports explicit control of memory references for
easier debugging.

However, creating message-passing applications may require more effort
than letting a parallelizing compiler produce parallel applications.

4 Chapter 1

Introduction
MPI concepts

MPI concepts
MPI is a standard specification for interfaces to a library of
message-passing routines. The goals of MPI are efficient communication
and portability.

Although several message-passing libraries exist on different systems,
MPI is popular for the following reasons:

• Support for full asynchronous communication—Process
communication can overlap process computation.

• Group membership—Processes may be grouped based on context.

• Synchronization variables that protect process messaging—When
sending and receiving messages, synchronization is enforced by
source and destination information, message labeling, and context
information.

• Portability—All implementations are based on a published standard
that specifies the semantics for usage.

The MPI library routines provide a set of functions that support
point-to-point communications, collective operations, process groups and
communication contexts, process topologies, and datatype manipulation.

Chapter 1 5

Introduction
MPI concepts

Although the MPI library contains a large number of routines to choose
from, you can design a number of applications by using the six routines
listed in Table 1.

Table 1 Six commonly used MPI routines

NOTE You must call MPI_Finalize in your application to conform to the MPI
Standard. HP MPI issues a warning when a process exits without calling
MPI_Finalize .

There should be no code before MPI_Init and after MPI_Finalize .
Applications that violate this rule are nonportable and may give incorrect
results.

As your application grows in complexity, you can introduce other
routines from the library. For example, MPI_Bcast is an often-used
routine for sending data from one process to other processes in a single
operation. Doing this is much more efficient in terms of performance
than using MPI_Send and MPI_Recv to transfer data from the sending
process to each receiving process one by one.

MPI routine Description

MPI_Init Initializes the MPI environment

MPI_Finalize Terminates the MPI environment

MPI_Comm_rank Determines the rank of the calling
process within a group

MPI_Comm_size Determines the size of the group

MPI_Send Sends messages

MPI_Recv Receives messages

6 Chapter 1

Introduction
MPI concepts

Point-to-point communication
Point-to-point communication involves sending and receiving messages
between two processes. This is the simplest form of data transfer in a
message-passing model.

The performance of point-to-point communication is measured in terms
of total transfer time. The total transfer time is defined as

total_transfer_time = latency + (message_size/bandwidth)

where

latency Specifies the time between the initiation of the data
transfer in the sending process and the arrival of the
first byte in the receiving process.

message_size Specifies the size of the message in Mbytes.

bandwidth Denotes the reciprocal of the time needed to transfer a
byte. Bandwidth is normally expressed in Mbytes per
second.

Obviously, low latencies and high bandwidths lead to better
performance.

Communicators
A communicator is an object that represents a group of processes and
their communication medium or context. These processes exchange
messages with each other to transfer data. In this context,
communicators encapsulate their processes such that communication is
restricted to processes only within the group.

The default communicators provided by MPI are MPI_COMM_WORLD
and MPI_COMM_SELF. MPI_COMM_WORLD consists of all processes
that are running when an application begins execution. Each process is
the single member of its own MPI_COMM_SELF.

Communicators that allow processes within a single group to exchange
data are termed intracommunicators. Communicators that allow
processes between two different groups to exchange data are called
intercommunicators.

Many MPI applications depend upon knowing the number of processes
and the process rank within a given communicator.

Chapter 1 7

Introduction
MPI concepts

To determine the number of processes in a communicator named comm,
use

MPI_Comm_size(MPI_Comm comm, int * size);

To determine the rank of each process in comm, use

MPI_Comm_rank(MPI_Comm comm, int * rank);

where rank is an integer between zero and (size - 1).

Refer to example “communicator.c” on page 134 for more information
about using communicators.

Sending and receiving messages
There are two methods for sending and receiving data: blocking and
nonblocking.

In blocking communications, the sending process does not return until
the send buffer is available for reuse.

In nonblocking communications, the sending process returns
immediately, but the send buffer is not safe for reuse. In this case:

1. The sending routine begins the message transfer and returns
immediately.

2. The application does some computation.

3. The application calls a completion routine (for example, MPI_Test or
MPI_Wait) to test or wait for completion of the send operation.

8 Chapter 1

Introduction
MPI concepts

Blocking communication
Blocking communication consists of four send modes and one receive
mode.

The four send modes include:

• Standard mode (MPI_Send)—The sending process returns when the
system can buffer the message or when the message is received and
the buffer is ready for reuse.

• Buffered mode (MPI_Bsend)—The sending process returns when the
message is buffered in the application-supplied buffer.

Avoid using the MPI_Bsend mode. This mode forces an additional
copy operation.

• Synchronous mode (MPI_Ssend)—The sending process returns only if
a matching receive is posted and the receiving process has started to
receive the message.

• Ready mode (MPI_Rsend)—The sending process assumes that a
matching receive is posted. The sending process returns after the
message is sent.

The four send modes are invoked in a similar manner and pass the same
arguments. The only difference is in the routine name used to send the
message (that is, MPI_Send versus MPI_Ssend).

To code a standard blocking send, use

MPI_Send(void * buf, int count, MPI_Datatype dtype, int
dest, int tag, MPI_Comm comm);

where

buf Specifies the starting address of the buffer.

count Indicates the number of buffer elements.

dtype Denotes the datatype of the buffer elements.

dest Specifies the rank of the destination process in the
group associated with the communicator comm.

tag Denotes the message label.

comm Designates the communication context that identifies a
group of processes.

Chapter 1 9

Introduction
MPI concepts

To code a blocking receive, use

MPI_Recv(void * buf, int count, MPI_datatype dtype, int
source, int tag, MPI_Comm comm, MPI_Status * status);

where

buf Specifies the starting address of the buffer.

count Indicates the number of buffer elements.

dtype Denotes the datatype of the buffer elements.

dest Specifies the rank of the destination process in the
group associated with the communicator comm.

tag Denotes the message label.

comm Designates the communication context that identifies a
group of processes.

source Specifies the rank of the source process in the group
associated with the communicator comm.

status Returns information about the received message.
Status information is useful when wildcards are used
or the received message is smaller than expected.
Status may also contain error codes.

Refer to examples “send_receive.f” on page 121, “ping_pong.c” on
page 123, and “master_worker.f90” on page 128 for more information
about using blocking communications.

Nonblocking communication
MPI provides nonblocking versions of the blocking send and receive calls.
Table 2 lists these calls.

Table 2 MPI blocking and nonblocking calls

Blocking mode Nonblocking mode

MPI_Send MPI_Isend

MPI_Bsend MPI_Ibsend

MPI_Ssend MPI_Issend

MPI_Rsend MPI_Irsend

MPI_Recv MPI_Irecv

10 Chapter 1

Introduction
MPI concepts

Nonblocking calls have the same arguments as their blocking
counterparts plus an additional argument for a request.

To code a standard nonblocking send, use

MPI_Isend(void * buf, int count, MPI_datatype dtype, int
dest, int tag, MPI_Com comm, MPI_Request * req);

where req specifies the request used by a completion routine when called
by the application to complete the send operation.

To complete nonblocking sends and receives, you can use MPI_Wait or
MPI_Test . The completion of a send indicates that the sending process is
free to access the send buffer. The completion of a receive indicates that
the receive buffer contains the message, the receiving process is free to
access it, and the status object is set.

Collective operations
Applications may require coordinated operations among multiple
processes. For example, all processes need to cooperate to sum sets of
numbers distributed among them.

MPI provides a set of collective operations to coordinate operations
among processes. These operations are implemented such that all
processes call the same operation with the same arguments. Thus, when
sending and receiving messages, one collective operation can replace
multiple sends and receives, resulting in lower overhead and higher
performance.

Collective operations consist of routines for communication,
computation, and synchronization. These routines all specify a
communicator argument that defines the group of participating
processes and the context of the operation.

NOTE Collective operations are valid only for intracommunicators.
Intercommunicators are not allowed as arguments.

Communication
Collective communication involves the exchange of data among all
processes in a group. The communication can be one-to-many,
many-to-one, or many-to-many.

The single originating or receiving process in the one-to-many and
many-to-one routines is called the root.

Chapter 1 11

Introduction
MPI concepts

Examples of such communication routines are:

Broadcast A one-to-many operation where the root sends its data
to all other processes in the communicator, including
itself. Figure 1 shows the broadcast operation for a
data locations in one process.

 Figure 1 MPI broadcast operation

Scatter A one-to-many operation where the root’s data is split
among all processes in the communicator. Figure 2
shows the scatter operation for a four-process data
locations in one process.

 Figure 2 MPI scatter operation

Data

P
ro

ce
ss

es X0 X0

X0

X0

X0

broadcast

Data

P
ro

ce
ss

es X0 X1 X2 X3

X3

X2

X1

X0

scatter

12 Chapter 1

Introduction
MPI concepts

To code a broadcast, use

MPI_Bcast(void * buf, int count, MPI_Datatype dtype, int
root, MPI_Comm comm);

where

buf Specifies the starting address of the buffer.

count Indicates the number of buffer entries.

dtype Denotes the datatype of the buffer entries.

root Specifies the rank of the root.

comm Designates the communication context that identifies a
group of processes.

To code a scatter, use

MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

where

sendbuf Specifies the starting address of the send buffer.

sendcount Specifies the number of elements sent to each process.

sendtype Denotes the datatype of the send buffer.

recvbuf Specifies the address of the receive buffer.

recvcount Indicates the number of elements in the receive buffer.

recvtype Indicates the datatype of the receive buffer elements.

root Denotes the rank of the sending process.

comm Designates the communication context that identifies a
group of processes.

Chapter 1 13

Introduction
MPI concepts

Computation
Computation uses MPI_Reduce to apply reduction operations across all
processes in a communicator. Reduction operations are binary and are
only valid on numeric data. Also, reductions are always associative but
may or may not be commutative.

You can select a reduction operation from a predefined list or define your
own operation. Examples of predefined operations include MPI_SUM and
MPI_PROD, which apply a summation and a multiplication across all
processes respectively.

To implement a reduction, use

MPI_Reduce(void * sendbuf, void * recvbuf, int count,
MPI_Datatype dtype, MPI_Op op, int root, MPI_Comm comm);

where

sendbuf Specifies the address of the send buffer.

recvbuf Denotes the address of the receive buffer.

count Indicates the number of elements in the send buffer.

dtype Specifies the datatype of the send and receive buffers.

op Specifies the reduction operation.

root Indicates the rank of the root process.

comm Designates the communication context that identifies a
group of processes.

Synchronization
Collective routines return as soon as their participation in a
communication is complete. However, the return of the calling process
does not guarantee that the receiving processes have completed or even
started the operation.

To synchronize the execution of processes, call MPI_Barrier .
MPI_Barrier blocks the calling process until all processes in the
communicator have called it. This is a useful approach for separating two
stages of a computation so messages from each stage are not overlapped.

14 Chapter 1

Introduction
MPI concepts

To implement a barrier, use

MPI_Barrier(MPI_Comm comm);

where comm identifies a group of processes and a communication
context.

Refer to examples “compute_pi.f” on page 126 and “cart.C” on page 130
for more information about using collective operation.

MPI datatypes
You can use predefined datatypes (for example, MPI_INT in C) to
transfer data between two processes using point-to-point
communication. This transfer is based on the assumption that the data
transferred is stored in contiguous memory (for example, sending an
array in a C or Fortran application).

What happens, however, when you want to transfer data that is not
stored contiguously? In this case, you can create a derived datatype or
use MPI_Pack and MPI_Unpack .

A derived datatype specifies a sequence of basic datatypes and integer
displacements describing the data layout in memory. Derived datatypes
are more efficient than using MPI_Pack and MPI_Unpack , but they
cannot handle the case where the data layout varies and is unknown by
the receiver beforehand (for example, messages that embed their own
layout description).

You create derived datatypes through the use of type-constructor
functions. Once a derived datatype is created, you can use it repeatedly
in all communicating calls. This allows MPI to pack and unpack the data
as necessary and further optimize the data transfer.

15 Chapter 1

Introduction
MPI concepts

The types of constructor functions include:

• Contiguous—Allows replication of a datatype into contiguous
locations.

• Vector—Allows replication of a datatype into locations that consist of
equally spaced blocks.

• Indexed—Allows replication of a datatype into a sequence of blocks
where each block can contain a different number of copies and have a
different displacement.

• Structure—Allows replication of a datatype into a sequence of blocks
such that each block consists of replications of different datatypes,
copies, and displacements.

HP MPI optimizes collection and communication of derived datatypes.

To create a vector datatype, use

MPI_Type_Vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype * newtype);

where

count Indicates the number of blocks.

blocklength Specifies the number of elements in each block.

stride Denotes the number of elements between the start of
two consecutive blocks.

oldtype Specifies the old datatype.

newtype Specifies the new datatype.

You must now commit the derived datatype by calling
MPI_Type_commit .

MPI_Pack allows you to store noncontiguous data in contiguous memory
locations. MPI_Unpack copies data from a contiguous buffer into
noncontiguous memory locations. Used together, these routines allow
you to transfer heterogeneous data in a single message.

16 Chapter 1

Introduction
MPI concepts

To code a pack, use

MPI_Pack(void * inbuf, int incount, MPI_Datatype dtype, void
* outbuf, int outsize, int * position, MPI_Comm, comm);

where

inbuf Specifies the start of the input buffer.

incount Indicates the number of input data items.

dtype Denotes the datatype of each input data item.

outbuf Specifies the start of the output buffer.

outsize Indicates the output buffer size in bytes.

position Specifies the current position in the buffer in bytes.

comm Designates the communication context that identifies a
group of processes.

Multilevel parallelism
By default, processes in an MPI application can only do one task at a
time. Such processes are known as single-threaded processes. This
means that each process has an address space together with a single
program counter, a set of registers, and a stack.

A multithreaded process has one address space, but each process thread
contains its own counter, registers, and stack.

Multilevel parallelism refers to MPI processes that have multiple
threads. Processes become multithreaded through calls to multithreaded
libraries, parallel directives and pragmas, and auto-compiler
parallelism.

Multilevel parallelism is beneficial for problems you can decompose into
logical parts for parallel execution (for example, a looping construct that
spawns multiple threads to do a computation and joins after the
computation is complete).

See “multi_par.f” on page 135 for an example of multilevel parallelism.

Chapter 1 17

Introduction
MPI concepts

Advanced topics
This chapter only provides information about basic MPI concepts.
Advanced MPI topics include:

• Error handling

• Process topologies

• User-defined datatypes

• Process grouping

• Attribute caching

To learn more about these advanced topics, see MPI: The Complete
Reference, the companion to this guide.

18 Chapter 1

Introduction
MPI concepts

Chapter 2 19

2 Getting started

This chapter describes how to get started with HP MPI. The topics
covered are:

• Configuring your environment

• Building and running your first application

20 Chapter 2

Getting started
Configuring your environment

Configuring your environment
Use the following steps to configure your environment before running
your first HP MPI application.

Step 1. Verify that HP MPI is installed on your system in the /opt/mpi directory.

Step 2. Add /opt/mpi/bin to the PATH variable by entering:

% setenv PATH /opt/mpi/bin:$PATH

Step 3. Add /opt/mpi/share/man to the MANPATH variable by entering:

% setenv MANPATH /opt/mpi/share/man:$MANPATH

If you ever move the HP MPI installation directory from its default
location (/opt/mpi), set the MPI_ROOT environment variable to point to
the new location. For example:

% setenv MPI_ROOT /usr/local/mpi

Chapter 2 21

Getting started
Building and running your first application

Building and running your first
application
To quickly gain experience with HP MPI, start with a C version of the
familiar hello_world program. This program is called hello_world.c and
prints out the text string “Hello world! I’m r of s on host” where r is a
process’s rank, s is the size of the communicator, and host is the host on
which the program is run.

The source code for hello_world.c is stored in /opt/mpi/help and is shown
below.

/* hello_world.c */
#include <stdio.h>
#include <mpi.h>

main(argc, argv)

int argc;
char *argv[];

{
 int rank, size, len;
 char name[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Get_processor_name(name, &len);
 printf ("Hello world! I'm %d of %d on %s\n", rank, size,
name);

 MPI_Finalize();
 exit(0);
}

22 Chapter 2

Getting started
Building and running your first application

Building and running on a single host
To build and run hello_world.c on a local host named jawbone:

Step 1. Change to a writable directory.

Step 2. Enter

% mpicc -o hello_world /opt/mpi/help/hello_world.c

This step builds the hello_world executable.

Step 3. Enter

% mpirun -np 4 hello_world

This step runs the hello_world executable using four processes.

hello_world output
The output from running the hello_world executable is printed in
nondeterministic order and is shown below.

Hello world! I'm 1 of 4 on jawbone
Hello world! I'm 3 of 4 on jawbone
Hello world! I'm 0 of 4 on jawbone
Hello world! I'm 2 of 4 on jawbone

Building and running on multiple hosts
To build and run hello_world.c on a local host named jawbone and a
remote host named wizard (assuming that both machines run under
either HP-UX or SPP-UX or hello_world.c is built on HP-UX so the same
binary can run on both hosts):

Step 1. Edit the .rhosts file on jawbone and wizard. Add an entry for wizard in
the .rhosts file on jawbone and an entry for jawbone in the .rhosts file on
wizard.

Step 2. Change to a writable directory.

Step 3. Enter

% mpicc -o hello_world /opt/mpi/help/hello_world.c

This step builds the hello_world executable.

23 Chapter 2

Getting started
Building and running your first application

Step 4. Copy the hello_world executable from jawbone to your home directory on
wizard.

Step 5. Create a text file called appfile and add the following two lines:

-np 2 hello_world
-h wizard -np 2 hello_world

The appfile file contains a separate line for each host, which specifies the
name of the executable and the number of processes to run on that host.
The -h option identifies the host name or IP address where the specified
processes must be run.

Step 6. Enter

% mpirun -f appfile

This step runs hello_world on the hosts specified in the appfile file.

hello_world output
The output from running the hello_world executable is printed in
nondeterministic order and is shown below.

Hello world! I'm 1 of 4 on wizard
Hello world! I'm 3 of 4 on jawbone
Hello world! I'm 0 of 4 on wizard
Hello world! I'm 2 of 4 on jawbone

24 Chapter 2

Getting started
Building and running your first application

Chapter 3 25

3 Understanding HP MPI

This chapter provides information about the HP MPI implementation of
MPI. The topics covered are:

• MPI 2.0 Features

• Directory structure

• Compiling applications

• Running applications

26 Chapter 3

Understanding HP MPI
MPI 2.0 Features

MPI 2.0 Features
 HP MPI supports the following features from the MPI 2.0 standard:

• MPI I/O (chapter 9)

• Language interoperability (section 4.12)

• Thread safety (section 8.7)

• One-sided communication (chapter 6)

• Miscellaneous features (sections 4.6 through 4.10 and section 8.3)

Each of these features is briefly described below. For more information,
refer to the HTML version of the MPI 2.0 standard at
http://www.mpi-forum.org.

MPI I/O
Unix I/O functions provide a model of a portable file system. However,
the portability and optimization needed for parallel I/O cannot be
achieved using this model.

The MPI 2.0 standard defines an interface for parallel I/O that supports
partitioning of file data among processes. The standard also supports a
collective interface for transferring global data structures between
process memories and files.

HP MPI I/O supports a subset of the MPI 2.0 standard using ROMIO, a
portable implementation developed at Argonne National Laboratory.
This subset includes:

• File manipulation (section 9.2)

• File views (section 9.3)

• Data access (section 9.4 except sections 9.4.4 and 9.4.5)

• Consistency and semantics (section 9.6)

Chapter 3 27

Understanding HP MPI
MPI 2.0 Features

HP MPI I/O has the following limitations:

• All nonblocking I/O requests use a MPIO_Request object instead of
MPI_Request. The MPIO_Test and MPIO_Wait routines are provided
to test and wait on MPIO_Request objects. MPIO_Test and
MPIO_Wait have the same semantics as MPI_Test and MPI_Wait
respectively.

• The status argument is not returned in any MPI I/O operation.

• All calls that involve MPI I/O file offsets must use an 8-byte integer.
Because HP-UX Fortran 77 only supports 4-byte integers, all Fortran
77 source files that involve file offsets must be compiled using HP-UX
Fortran 90. In this case, the Fortran 90 offset is defined by
KIND = integer(MPI_OFFSET_KIND).

• MPI_File_set_atomicity(MPI_File fh, int flag) returns
MPI_ERR_UNKNOWN if fh is a file that resides on systems other
than NFS and VxFS.

• Some I/O routines (for example, MPI_File_open ,
MPI_File_delete , and MPI_File_set_info) take an input
argument called info. Supported keys for this argument include:

– cb_buffer_size—Buffer size for collective I/O.

– cb_nodes—Number of processes that actually perform I/O in
collective I/O.

– ind_rd_buffer_size—Buffer size for data sieving in independent
reads.

– ind_wr_buffer_size—Buffer size for data sieving in independent
writes.

If a given key is not supported or if the value is invalid, info is
ignored.

 Refer to example “io.c” on page 145 for more information about MPI I/O.

28 Chapter 3

Understanding HP MPI
MPI 2.0 Features

Language interoperability
Language interoperability allows you to write mixed-language
applications or applications that call library routines written in another
language. For example, you can write applications in Fortran or C that
call MPI library routines written in C or Fortran respectively.

MPI provides a special set of conversion routines for converting objects
between languages. The types of objects that you can convert include
MPI communicators, data types, groups, requests, reduction operations,
and status. The routines are shown in Table 3.

Table 3 Language interoperability conversion routines

Routine Description

MPI_Fint MPI_Comm_c2f(MPI_Comm); Converts a C
communicator handle
into a Fortran handle.

MPI_Comm MPI_Comm_f2c(MPI_Fint); Converts a Fortran
communicator handle
into a C handle.

MPI_Fint MPI_Type_c2f(MPI_Datatype); Converts a C data type
into a Fortran data type.

MPI_Datatype MPI_Type_f2c(MPI_Fint); Converts a Fortran data
type into a C data type.

MPI_Fint MPI_Group_c2f(MPI_Group); Converts a C group into
a Fortran group.

MPI_Group MPI_Group_f2c(MPI_Fint); Converts a Fortran
group into a C group.

MPI_Fint MPI_Op_c2f(MPI_Op); Converts a C reduction
operation into a Fortran
reduction operation.

MPI_Op MPI_Op_f2c(MPI_Fint); Converts a Fortran
reduction operation into
a C reduction operation.

MPI_Fint MPI_Request_c2f(MPI_Request); Converts a C request
into a Fortran request.

Chapter 3 29

Understanding HP MPI
MPI 2.0 Features

Thread-compliant library
HP MPI provides a thread-compliant library (libmtmpi) for applications
running under HP-UX 11.0 (32-and 64-bits) and applications running
under SPP-UX 5.3 that use the pthread library.

By default, the nonthread-compliant library (libmpi) is used when
running MPI jobs. Table 4 shows which library to use for a given HP MPI
application type.

Table 4 HP MPI library usage

MPI_Request MPI_Request_f2c(MPI_Fint); Converts a Fortran
request into a C request.

int MPI_Status_c2f(MPI_Status *, MPI_Fint *); Converts a C status into
a Fortran status.

int MPI_Status_f2c(MPI_Fint *, MPI_Status *); Converts a Fortran
status into a C status.

Routine Description

Application type Libmtmpi Libmpi Comments

Non-threaded MPI
application

Yes Most MPI applications.

Non-threaded MPI
application with mostly
nonblocking communication

Yes Yes Potential performance
improvement if run with
libmtmpi.

-lveclib, MLIB is not parallel Yes Should not link with
CPSlib. MLIB calls cannot
go thread parallel.

-lveclib, MLIB is thread
parallel

Yes Must link with CPSlib.
MLIB calls may go thread
parallel.

+O3 +Oparallel Yes Must use libmtmpi.

Using pthreads or CPSlib
calls

Yes Must use libmtmpi.

30 Chapter 3

Understanding HP MPI
MPI 2.0 Features

To link with libmtmpi, use the -lmtmpi option when compiling your
application. If you use the -lmtmpi option when compiling your
application under SPP-UX, you must first run mpa on your executable.
For example:

%mpa -parallel -n -m program

To create a communication thread for each process in your job (for
example, to overlap computation and communication), specify the ct
option in the MPI_MT_FLAGS environment variable. See
“MPI_MT_FLAGS” on page 45 for more information.

To set the level of thread support for your job, you can specify the
appropriate run-time option in MPI_MT_FLAGS or modify your
application to use MPI_Init_thread instead of MPI_Init .

To modify your application, replace the call to MPI_Init with

MPI_Init_thread(int *argc, char *((*argv) []), int
required, int * provided));

where

required Specifies the desired level of thread support.

provided Specifies the provided level of thread support.

Table 5 shows the possible thread-initialization values for required and
the values returned by provided for libmpi and libmtmpi.

Table 5 Thread-initialization values

MPI library Value for required Value returned by provided

libmpi MPI_THREAD_SINGLE MPI_THREAD_SINGLE

libmpi MPI_THREAD_FUNNELED MPI_THREAD_SINGLE

libmpi MPI_THREAD_SERIALIZED MPI_THREAD_SINGLE

libmpi MPI_THREAD_MULTIPLE MPI_THREAD_SINGLE

libmtmpi MPI_THREAD_SINGLE MPI_THREAD_SINGLE

libmtmpi MPI_THREAD_FUNNELED MPI_THREAD_FUNNELED

libmtmpi MPI_THREAD_SERIALIZED MPI_THREAD_SERIALIZED

libmtmpi MPI_THREAD_MULTIPLE MPI_THREAD_MULTIPLE

Chapter 3 31

Understanding HP MPI
MPI 2.0 Features

Table 6 shows the relationship between the possible thread-support
levels in MPI_Init_thread and the corresponding options in
MPI_MT_FLAGS

Table 6 Thread-support levels

Refer to example “thread_safe.c” on page 147 for more information about
thread compliance.

To prevent application deadlock, do not call libmtmpi from a signal
handler or cancel a thread that is executing inside an MPI routine.

Libmtmpi does not support counter instrumentation (“Using counter
instrumentation” on page 66) and trace file analysis (“Using XMPI” on
page 71).

Libmtmpi supports calls to MPI_Init_thread , MPI_Is_thread_main ,
and MPI_Query_thread in the MPI 2.0 standard. No other calls are
supported.

MPI_Init_thread MPI_MT_FLAGS Behavior

MPI_THREAD_SINGLE single Only one thread will execute.

MPI_THREAD_FUNNELED fun The process may be multithreaded,
but only the main thread will make
MPI calls.

MPI_THREAD_SERIALIZED serial The process may be multithreaded,
and multiple threads can make MPI
calls, but only one call can be made at
a time.

MPI_THREAD_MULTIPLE mult Multiple threads may call MPI at any
time with no restrictions. This option
is the default.

32 Chapter 3

Understanding HP MPI
MPI 2.0 Features

One-sided communication
Message-passing communication involves transferring data from the
sending process to the receiving process. It also requires synchronization
between the sender and receiver.

One-sided communication separates the transfer of data from process
synchronization. This mode of communication is best for applications
with dynamically changing data access patterns where data distribution
is fixed or slowly changing. Processes in such applications, however, may
not know which data in their memory needs to be accessible by remote
processes or even the identity of these remote processes.

In one-sided communication, the transfer parameters are all available on
one side, and a single process specifies both the source and data buffers.
In this case, applications can open windows in their memory space that
are accessible by remote processes.

HP MPI supports a subset of the MPI 2.0 one-sided communication
functionality. Data transfer is handled using MPI_Put and MPI_Get ,
which places data in and retrieves data from a remote window segment
respectively. Synchronization is handled using MPI_Win_fence and
MPI_Win_lock/MPI_Win_unlock , which synchronizes all data
transfers on a window and locks/unlocks a single window respectively.

Restrictions for the HP MPI implementation of one-sided communication
include:

• Only single-host operations are supported.

• MPI window segments must be allocated using MPI_Alloc_mem ;
they cannot be placed in COMMON blocks, the stack, or the heap.

Miscellaneous features
Miscellaneous features that are supported include:

• Committing a committed datatype—Allows MPI_Type_commit to
accept committed datatypes. In this case, the action is the same as a
no-op.

• Allowing user functions at process termination—Defines what actions
take place when a process terminates. These actions are specified by
attaching an attribute to MPI_Comm_self with a callback function.

Chapter 3 33

Understanding HP MPI
MPI 2.0 Features

• Determining whether MPI has finished—Allows layered libraries to
determine whether MPI is still active by using MPI_Finalized .

• Using the info object—Sets (key, value) pairs for an information object
as a way to provide system-dependent hints. Info object routines
include:

– MPI_Info_create —Creates a new info object.

– MPI_Info_set —Adds the (key,value) pair to info and overrides
the value if a value for the same key was previously set.

– MPI_Info_delete —Deletes a (key,value) pair from info.

– MPI_Info_ge t—Retrieves the value associated with key in a
previous call to MPI_Info_set.

– MPI_Info_get_valuelen —Retrieves thew length of the value
associated with key.

– MPI_Info_get_nkeys —Returns the number of keys currently
defined in info.

– MPI_Info_get_nthkey —Returns the nth defined key in info.

– MPI_Info_dup —Duplicates an existing info object, creating a
new object with the same (key,value) pairs and ordering of keys.

– MPI_Info_free —Frees info.

• Associating information with status—Sets the number of elements to
associate with the status for requests. In addition, sets the status to
associate with the cancel flag to indicate whether a request was
cancelled. Status routines include:

– MPI_Status_set_elements —Modifies the opaque part of
status.

– MPI_Status_set_cancelled —Indicates whether a status
request is cancelled.

34 Chapter 3

Understanding HP MPI
Directory structure

Directory structure
All HP MPI files are stored in the /opt/mpi directory. The directory
structure is organized as shown in Table 7.

Table 7 Organization of the /opt/mpi directory

The man pages located in the /opt/mpi/share/man/man1.Z subdirectory
are grouped into three categories: compilation, general, and run time.
The compilation and run-time categories correspond to available types of
HP MPI utilities. All three categories are described in Table 8.

Subdirectory Contents

bin Command files for the HP MPI utilities

doc/html HTML version of the HP MPI User’s Guide

help Source files for the example programs

include Header files

lib/X11/app-defaults Application default settings for the XMPI
trace utility and the mpiview profiling tool

lib/pa1.1 MPI 32-bit libraries

lib/pa20_64 MPI 64-bit libraries

newconfig/ Configuration files and release notes

share/man/man1.Z Man pages for the HP MPI utilities

share/man/man3.Z Man pages for HP MPI library

Chapter 3 35

Understanding HP MPI
Directory structure

Table 8 Man page categories

Category Description

Compilation Describes the available compilation utilities.
Refer to “Compiling applications” on page 36
for more information.

General Describes the general features of
HP MPI. The man page is called MPI.1.

Run time Describes the available run-time utilities.
Refer to “Run-time utility commands” on
page 54 for more information.

36 Chapter 3

Understanding HP MPI
Compiling applications

Compiling applications
The compiler you use to build HP MPI applications depends upon which
programming language you use. HP MPI provides separate compilation
utilities and default compilers for the languages shown in Table 9.

Table 9 Compilation utilities

If aCC is not available, mpiCC uses CC as the default C++ compiler.

Even though the mpiCC and mpif90 compilation utilities are shipped
with HP MPI, all C++ and Fortran 90 applications use C and Fortran 77
bindings respectively.

If you want to use a compiler other than the default one assigned to each
utility, you can set the environment variables shown in Table 10.

Table 10 Compilation environment variables

Language Utility Default compiler

C mpicc /opt/ansic/bin/cc

C++ mpiCC /opt/aCC/bin/aCC

Fortran 77 mpif77 /opt/fortran/bin/f77

Fortran 90 mpif90 /opt/fortran90/bin/f90

Utility Environment variable

mpicc MPI_CC

mpiCC MPI_CXX

mpif77 MPI_F77

mpif90 MPI_F90

Chapter 3 37

Understanding HP MPI
Compiling applications

To set a compilation environment variable, enter:

% setenv compilation_environment_variable path

where compilation_environment_variable is the name of the variable you
want to set and path specifies the path to the compiler you want to use.

64-bit support
HP-UX 11.0 is available as a 32- and 64-bit operating system. You must
run 64-bit executables on the 64-bit system (though you can build 64-bit
executables on the 32-bit system).

HP MPI supports a 64-bit version of the MPI library on platforms
running HP-UX 11.0. Both 32- and 64-bit versions of the library are
shipped with HP-UX 11.0 (only a 32-bit version is shipped with
HP-UX 10.20). For HP-UX 11.0, you cannot mix 32-bit and 64-bit
executables in the same application.

The mpicc and mpiCC compilation commands link the 64-bit version of
the library if you compile with the +DA2.0W or +DD64 options. The
mpif90 compilation command links the 64-bit version of the library if
you compile with the +DA2.0W option. Otherwise, the 32-bit version is
used.

38 Chapter 3

Understanding HP MPI
Running applications

Running applications
Most HP MPI applications are run using the mpirun command. You
should invoke the mpirun command with the -j option, which displays
the job ID of your job. The job ID is useful during troubleshooting if you
want to check for a hung job using the mpijob command or want to
terminate your job using the mpiclean command.

In some cases, you can use the executable -np # syntax to start your
application. For example, to start an executable named hello_world with
four processes, enter:

% hello_world -j -np 4

For multiprotocol applications that span multiple subcomplexes or
multiple hosts, you must use mpirun together with an appfile. For
applications that run on a single host and have a single executable, you
can use executable -np # syntax, although mpirun is still
recommended.

Types of applications
HP MPI supports two programming styles: SPMD applications and
MPMD applications.

Running SPMD applications
A single program multiple data (SPMD) application consists of a single
program that is executed by each process in the application. Each
process normally acts upon different data. Even though this style
simplifies the execution of an application, using SPMD can also make the
executable larger and more complicated.

Each process calls MPI_Comm_rank to distinguish itself from all other
processes in the application. It then determines what processing to do.

To run a SPMD application, use the mpirun command like this:

% mpirun -np # program

where # is the number of processors and program is the name of your
application.

Chapter 3 39

Understanding HP MPI
Running applications

Suppose you want to build a C application called poisson and run it using
five processes to do the computation. To do this, use the following
command sequence:

% mpicc -o poisson poisson.c

% mpirun -np 5 poisson

Running MPMD applications
A multiple program multiple data (MPMD) application uses two or more
separate programs to functionally decompose a problem.

This style can be used to simplify the application source and reduce the
size of spawned processes. Each process can execute a different program.

To run an MPMD application, the mpirun command must reference an
appfile that contains the number of processes to be created from each
program and the list of programs to be run.

A simple invocation of an MPMD application looks like this:

% mpirun -f appfile

where appfile is the path name to a file that contains process counts and
a list of programs.

Suppose you decompose the poisson application into two source files:
poisson_master (uses a single master process) and poisson_child (uses
four child processes).

The appfile for the example application contains the two lines shown
below:

-np 1 poisson_master
-np 4 poisson_child

To build and run the example application, use the following command
sequence:

% mpicc -o poisson_master poisson_master.c
% mpicc -o poisson_child poisson_child.c
% mpirun -f appfile

See “Creating an appfile” on page 58 for more information about using
appfiles.

40 Chapter 3

Understanding HP MPI
Running applications

Multiprotocol messaging
Multiprotocol messaging refers to process communication that uses
different protocols depending upon where the processes are located and
what type of Exemplar system is used.

An example configuration for an X-Class server is shown in Figure 3.

 Figure 3 Multiprotocol messaging with an X-Class server

The circles within each hypernode represent processes. The arrows
represent message passing. An arrow originates from the sending
process and terminates at the receiving process.

Point-to-point and collective protocols on an X-Class server support
messaging between:

• Processes on the same host (on the same or different hypernodes)—
Data is transferred using optimized byte-copy and global shared
memory.

• Processes on different hosts—Data is transferred using TCP/IP.

MPI_COMM_WORLD

Hypernode

Host

Process

Chapter 3 41

Understanding HP MPI
Running applications

The communication speed of protocols for servers running under
SPP-UX is fastest for processes on the same hypernode, slower for
processes on different hypernodes in the same host, and slowest for
processes on different hosts.

An example configuration for a V2200 server is shown in Figure 4.

 Figure 4 Multiprotocol messaging with a V2200 server

The circles within each host represent processes. The arrows represent
message passing. An arrow originates from the sending process and
terminates at the receiving process.

Point-to-point and collective protocols on servers running under
HP-UX support messaging between:

• Processes on the same host—Data is transferred using optimized
byte-copy and global shared memory.

• Processes on different hosts—Data is transferred using TCP/IP.

MPI_COMM_WORLD

Host

Process

42 Chapter 3

Understanding HP MPI
Running applications

Run-time environment variables
Environment variables are used to alter the way HP MPI executes an
application. The variable settings determine how an application behaves
and how an application allocates internal resources at run time.

Many applications run without setting any environment variables.
However, applications that use a large number of nonblocking messaging
requests, require debugging support, or need to control process
placement may need a more customized configuration.

Environment variables are always local to the system where mpirun is
running. To propagate environment variables to remote hosts, you must
specify each variable in an appfile using the -e option. See “Creating an
appfile” on page 58 for more information.

The environment variables listed below affect the behavior of HP MPI at
run time:

• MPI_FLAGS

• MPI_DLIB_FLAGS

• MPI_MT_FLAGS

• MPI_GLOBMEMSIZE

• MPI_TOPOLOGY

• MPI_SHMEMCNTL

• MPI_TMPDIR

• MPI_XMPI

• MPI_WORKDIR

• MPI_CHECKPOINT

• MPI_INSTR

• MPI_COMMD

• MPI_LOCALIP

• MP_GANG

43 Chapter 3

Understanding HP MPI
Running applications

MPI_FLAGS
MPI_FLAGS modifies the general behavior of HP MPI. The MPI_FLAGS
syntax is shown below:

[ecxdb,][edde,][exdb,][egdb,][j,][l,][s[a|p][#],][v,]
[y[#],][o,][+E2]

where

ecxdb Starts a separate CXdb session for each process. The
debugger must be in the command search path. This
option is only provided for backward compatibility on
servers running under SPP-UX. See “Debugging HP
MPI applications” on page 108 for more information.

edde Starts the application under the DDE debugger. The
debugger must be in the command search path. This
option is only supported on servers running under
HP-UX. See “Debugging HP MPI applications” on
page 108 for more information.

exdb Starts the application under the xdb debugger. The
debugger must be in the command search path. This
option is only supported on servers running under
HP-UX. See “Debugging HP MPI applications” on
page 108 for more information.

egdb Starts the application under the gdb debugger. The
debugger must be in the command search path. This
option is only supported on servers running under
HP-UX. See “Debugging HP MPI applications” on
page 108 for more information.

j Prints the HP MPI job identifier.

l Reports memory leaks caused by not freeing memory
allocated when an HP MPI job is run. For example, if
you create a new communicator or user-defined
datatype after you call MPI_Init , you must free the
memory allocated to these objects before you call
MPI_Finalize . In C, this is analogous to making calls
to malloc() and free() for each object created during
program execution.

Setting the l option may decrease application
performance.

44 Chapter 3

Understanding HP MPI
Running applications

s[a|p][#] Selects signal and maximum time delay for guaranteed
message progression. The sa option selects SIGALRM.
The sp option selects SIGPROF. The # option is the
number of seconds to wait before issuing a signal to
trigger message progression. The default value of this
option is sp604800 , which issues a SIGPROF once a
week.

This mechanism is used to guarantee message
progression in applications that use nonblocking
messaging requests followed by prolonged periods of
time in which HP MPI routines are not called.

The SIGPROF option is not supported on servers
running under SPP-UX when your application
executable is in Extended Standard Object Module
format.

v Prints the version number.

y[#] Enables spin/yield logic. The spin value # is any integer
between zero and 10,000 and is measured in
milliseconds. To spin without yielding, specify y
without a spin value.

The system treats a nonzero spin value as a
recommendation only. It does not guarantee that the
value you specify will be used.

o Writes an optimization report to stdout.
MPI_Cart_create and MPI_Graph_create optimize
the mapping of processes onto the virtual topology if
rank reordering is enabled. See “Topology
optimization” on page 105 for more information.

+E2 Sets -1 as the value of .TRUE. and 0 as the value for
FALSE. when returning logical values from HP MPI
routines called within Fortran 77 applications.

45 Chapter 3

Understanding HP MPI
Running applications

MPI_DLIB_FLAGS
MPI_DLIB_FLAGS controls miscellaneous run-time options when using
the diagnostics library. The MPI_DLIB_FLAGS syntax is shown below:

[ns,][strict,][nmsg,][dump: prefix,][dumpf: prefix]

where

ns Disables message signature analysis.

strict Enables MPI object-space corruption detection. Setting
this option for applications that make calls to routines
in the MPI 2.0 standard may produce false error
messages.

nmsg Disables detection of multiple buffer writes during
receive operations.

dump: prefix Dumps (unformatted) all sent and received messages to
prefix.msgs.rank where rank is the rank of a specific
process.

dumpf: prefix Dumps (formatted) all sent and received messages to
prefix.msgs.rank where rank is the rank of a specific
process.

See “Using the Diagnostics Library” on page 109 for more information.

MPI_MT_FLAGS
MPI_MT_FLAGS controls run-time options when using the
thread-compliant version of HP MPI. The MPI_MT_FLAGS syntax is
shown below:

[ct,][single,][fun,][serial,][mult]

where

ct Creates a hidden communication thread for each rank
in the job. When enabling this option, be careful not to
oversubscribe your system. For example, if you enable
ct for a 16-process application running on a 16-way
machine, the result will be a 32-way job.

single Asserts that only one thread will execute.

fun Asserts that a process may be multithreaded, but only
the main thread will make MPI calls (that is, all calls
are funneled to the main thread).

46 Chapter 3

Understanding HP MPI
Running applications

serial Asserts that a process may be multithreaded, and
multiple threads may make MPI calls, but only one call
will be made at a time (that is, all calls are serialized).

mult Asserts that multiple threads may call MPI at any time
with no restrictions.

The single , fun , serial , and mult options are mutually exclusive. For
example, if you specify the serial and mult options in
MPI_MT_FLAGS, only the last option is processed (in this case, the mult
option).

If no run-time option is specified, the default is mult .

For more information about using MPI_MT_FLAGS with the
thread-compliant library, see “Thread-compliant library” on page 29.

MPI_GLOBMEMSIZE
MPI_GLOBMEMSIZE specifies the amount of shared memory allocated for
all processes in an HP MPI application. The MPI_GLOBMEMSIZE syntax
is shown below:

amount

where amount specifies the total amount of shared memory in bytes for
all processes. The default is 2 Mbytes for up to 64-way applications and
4 Mbytes for larger applications.

Be sure that the value specified for MPI_GLOBMEMSIZE is less than the
amount of global shared memory allocated for the subcomplex when
working with X-Class servers. Otherwise, swapping overhead will
degrade application performance.

Chapter 3 47

Understanding HP MPI
Running applications

MPI_TOPOLOGY
MPI_TOPOLOGY controls application process placement within a
subcomplex on servers running under SPP-UX (the value is ignored on
HP-UX systems). The MPI_TOPOLOGY syntax is shown below:

[[sc]/[hypernode]:][topology]

where

sc Identifies the name of a subcomplex.

hypernode Specifies the logical hypernode within the subcomplex
on which to start the first process. By default, the
initial logical hypernode is chosen by the operating
system.

topology Is a comma-separated list that specifies the number of
processes to start on each logical hypernode in the
subcomplex, beginning with logical hypernode 0.

HP MPI uses logical hypernode numbering. The operating system
handles the mapping from physical to logical hypernodes. This mapping
follows the lowest-to-highest sorted order of physical hypernode
numbers. For example, in a 2-node subcomplex using physical
hypernodes 3 and 4, physical hypernode 3 maps to logical hypernode 0,
and physical hypernode 4 maps to logical hypernode 1.

An MPI_TOPOLOGY value of System/3:4,0,4,4 specifies that logical
hypernodes zero, two, and three of the subcomplex System each run four
processes. The first application process is started on logical hypernode
three.

When running a multinode application where some processes run
different executables, MPI_TOPOLOGY settings in the appfile override any
settings you might have specified by setting MPI_TOPOLOGY from the
command line. See “Creating an appfile” on page 58 for more
information.

The number of processes specified using MPI_TOPOLOGY must match the
number of processes specified in mpirun . For example, if you set
MPI_TOPOLOGY to 2,3 and invoke mpirun with -np 6 , the system
generates an error message and terminates your job.

48 Chapter 3

Understanding HP MPI
Running applications

Also, be sure that the number of hypernodes specified in MPI_TOPOLOGY
matches the number of available hypernodes on the subcomplex you
want to use. For example, if you set MPI_TOPOLOGY to 6,2,3 and
System only contains hypernodes 0 and 1, the system will generate an
error message and terminate your job. To prevent this, use the scm
utility to determine the configuration of system subcomplexes before
invoking mpirun .

The default subcomplex on all systems is called System. Use the mpa
utility to change the default to another subcomplex.

MPI_SHMEMCNTL
MPI_SHMEMCNTL controls the subdivision of each process’s shared
memory for the purposes of point-to-point and collective
communications. The MPI_SHMEMCNTL syntax is shown below:

nenv, frag, generic

where

nenv Specifies the number of envelopes per process pair. The
default is 8.

frag Denotes the size in bytes of the message-passing
fragments region. The default is 87.5 percent of shared
memory.

generic Specifies the size in bytes of the generic-shared
memory region. The default is 12.5 percent of shared
memory.

MPI_TMPDIR
By default, HP MPI uses the /tmp directory to store temporary files
needed for its operations. MPI_TMPDIR is used to point to a different
temporary directory. The MPI_TMPDIR syntax is shown below:

directory

where directory specifies an existing directory used to store temporary
files.

Chapter 3 49

Understanding HP MPI
Running applications

MPI_XMPI
MPI_XMPI specifies options for run-time raw trace generation. These
options represent an alternate way to set tracing rather than using the
trace options supplied with mpirun .

The argument list for MPI_XMPI contains the prefix name for the file
where each process writes its own raw trace data. Each process creates
its own filename by concatenating the prefix, a period, and the process’s
global rank number.

For example, if a process has rank 0 and the prefix is hello_world, the
process’s raw trace file would be hello_world.0. If the file prefix name
does not begin with a forward slash (/) (for example, /tmp/test), the raw
trace file is stored in the directory in which the process is executing
MPI_Init .

The MPI_XMPI syntax is shown below:

prefix[: bs###][:nc][:off][:s][:nf][:k]

where

prefix Specifies the tracing output file prefix. This is a
required parameter.

bs### Denotes the buffering size in kbytes for dumping raw
trace data. Actual buffering size may be rounded up by
the system. The default buffering size is 4096 kbytes.
Specifying a large buffering size reduces the need to
flush raw trace data to a file when process buffers
reach capacity. Flushing too frequently can cause
communication routines to run slower. If this problem
occurs, increase the buffering size.

nc Specifies no clobber, which means that an HP MPI
application aborts if a file with the name specified in
prefix already exists.

off Denotes that trace generation is initially turned off and
only begins after all processes collectively call
MPIHP_Trace_on .

s Specifies a simpler tracing mode by omitting tracing for
MPI_Test , MPI_Testall , MPI_Testany , and
MPI_Testsome calls that do not complete a request.
This option may reduce the size of trace data so that
xmpi runs faster.

50 Chapter 3

Understanding HP MPI
Running applications

nf Denotes that a consolidated trace file is not generated.
In addition, raw trace files are not deleted. You may
want to use this option if your application contains a
large number of processes, and you do not want to wait
for MPI_Finalize to consolidate the raw trace files
before your application terminates.

k Specifies that raw trace files are kept.

Even though you can specify tracing options through the MPI_XMPI
environment variable, the recommended approach is to use the mpirun
command with the -t option instead. In this case, the specifications you
provide with the -t option take precedence over any specifications you
may have set with MPI_XMPI. Using mpirun to specify tracing options
guarantees that multihost applications do tracing in a consistent
manner. See “mpirun” on page 55 for more information.

Trace-file generation (in conjunction with XMPI) and counter
instrumentation are mutually exclusive profiling techniques. Trace-file
generation is not supported for appfiles where all the hosts are remote.

MPI_WORKDIR
By default, HP MPI applications execute in the directory where they are
started. MPI_WORKDIR changes the execution directory. The
MPI_WORKDIR syntax is shown below:

directory

where directory specifies an existing directory where you want the
application to execute.

MPI_CHECKPOINT
You can checkpoint and restart HP MPI applications running under
SPP-UX on a single subcomplex by setting MPI_CHECKPOINT. In this
case, you cannot start your application using mpirun . MPI_CHECKPOINT
does not require specific arguments. For example, to checkpoint and
restart the hello_world application:

% setenv MPI_CHECKPOINT

% hello_world -np 4

Chapter 3 51

Understanding HP MPI
Running applications

When you use MPI_CHECKPOINT, the following limitations apply:

• Your HP MPI job is not assigned a job ID. You cannot monitor or
terminate the job using the mpijob or mpiclean utilities
respectively. Also, no job ID is printed when the j option is set in
MPI_FLAGS. If your application crashes or hangs, you must do
manual cleanup using the kill or ipcrm UNIX utilities.

• MPI_Abort does not kill peer processes in the communicator. In this
case, only the calling process terminates.

• Direct process-to-process byte-copy is disabled. This results in a
bandwidth reduction for large message transfers.

MPI_INSTR
MPI_INSTR enables counter instrumentation for profiling HP MPI
applications. The MPI_INSTR syntax is shown below:

prefix[: b#1, #2][:nd][:nc][:off][:nl][:np][:nm][:c]

where

prefix Specifies the instrumentation output file prefix. The
rank zero process writes the application’s
measurement data in human-readable format to
prefix.instr and in internal format to prefix.mpiview. If
the prefix does not represent an absolute pathname,
the instrumentation output file is opened in the
working directory of the rank zero process when
MPI_Init is called.

b#1,#2 Redefines the instrumentation message bins to include
a bin having byte range #1 and #2 inclusive. The high
bound of the range can be infinity, representing the
largest possible message size.

nd Disables rank-by-peer density information when
running counter instrumentation.

nc Specifies no clobber. If the instrumentation output file
exists, MPI_Init aborts.

off Denotes that counter instrumentation is initially
turned off and only begins after all processes
collectively call MPIHP_Trace_on .

52 Chapter 3

Understanding HP MPI
Running applications

nl Specifies not to dump a long breakdown of the
measurement data to the instrumentation output file
(in this case, do not dump minimum, maximum, and
average time data).

np Denotes not to dump a per-process breakdown of the
measurement data to the instrumentation output file.

nm Specifies not to dump message-size measurement data
to the instrumentation output file.

c Specifies not to dump time measurement data to the
instrumentation output file.

See “Using counter instrumentation” on page 66 for more information.

Even though you can specify profiling options through the MPI_INSTR
environment variable, the recommended approach is to use the mpirun
command with the -i option instead. Using mpirun to specify profiling
options guarantees that multihost applications do profiling in a
consistent manner. See “mpirun” on page 55 for more information.

Counter instrumentation and trace-file generation (used in conjunction
with XMPI) are mutually exclusive profiling techniques. Counter
instrumentation is not supported for appfiles where all the hosts are
remote.

MPI_COMMD
MPI_COMMD routes all off-host communication through daemons rather
than between processes. The MPI_COMMD syntax is shown below:

out_frags, in_frags

where

out_frags Specifies the number of 16Kbyte fragments available in
shared memory for outbound messages. Outbound
messages are sent from processes on a given host to
processes on other hosts using the communication
daemon.

The default value for out_frags is 64. Increasing the
number of fragments for applications with a large
number of processes improves system throughput.

Chapter 3 53

Understanding HP MPI
Running applications

in_frags Specifies the number of 16Kbyte fragments available in
shared memory for inbound messages. Inbound
messages are sent from processes on one or more hosts
to processes on a given host using the communication
daemon.

The default value for in_frags is 64. Increasing the
number of fragments for applications with a large
number of processes improves system throughput.

See “Communicating using daemons” on page 62 for more information.

MPI_LOCALIP
MPI_LOCALIP specifies the host IP address that is assigned throughout a
session. Ordinarily, mpirun and xmpi determine the IP address of the
host they are running on by calling gethostbyaddr . However, when a
host uses a SLIP or PPP protocol, the host’s IP address is dynamically
assigned only when the network connection is established. In this case,
gethostbyaddr may not return the correct IP address.

The MPI_LOCALIP syntax is shown below:

xxx. xxx. xxx. xxx

where xxx. xxx. xxx. xxx specifies the host IP address.

MP_GANG
MP_GANG enables gang scheduling. Gang scheduling can improve
application performance in loaded timeshare environments that are over
subscribed. It also supports low-latency interactions among processes in
shared-memory applications.

The MP_GANG syntax is shown below:

[ON|OFF]

where

ON Enables gang scheduling.

OFF Disables gang scheduling.

For multihost configurations, you need to set MP_GANG for each appfile
entry.

54 Chapter 3

Understanding HP MPI
Running applications

Gang scheduling improves the latency for synchronization by ensuring
that all runable processes in a gang are scheduled simultaneously.
Processes waiting at a barrier, for example, do not have to wait for
processes that are not currently scheduled. This proves most beneficial
for applications with frequent synchronization operations. Applications
with infrequent synchronization, however, may perform better if gang
scheduling is disabled.

Process priorities for gangs are managed identically to timeshare
policies. The timeshare priority scheduler determines when to schedule a
gang for execution. While it is likely that scheduling a gang will preempt
one or more higher priority timeshare processes, the gang-scheduler
policy is fair overall. In addition, gangs are scheduled for a single time
slice, which is the same for all processes in the system.

HP MPI supports gang scheduling for applications running under
HP-UX 11.0 Extension Pack, June 1998 (XR39/IPR9806). MPI processes
are allocated statically at the beginning of execution. As an MPI process
creates new threads, they are all added to the same gang if MP_GANG is
enabled.

Run-time utility commands
HP MPI provides a set of utility commands to supplement the MPI
library routines. These commands include:

• mpirun

• mpiclean

• mpijob

• xmpi

• mpiview

Chapter 3 55

Understanding HP MPI
Running applications

mpirun
mpirun starts an HP MPI application.

mpirun syntax has four forms:

• mpirun [-np #] [-help] [-version] [-jpvW] [-t spec]
[-i spec] [-h host] [-l user] [-e var[= val] [...]]
[-sp paths] [-commd] program [args]

• mpirun [-help][-version] [-jpvW] [-t spec] [-i spec]
[-commd] -f appfile

• bsub [lsf_options] pam -mpi mpirun [-np #][-help]
[-version] [-jpvW] [-t spec] [-i spec] [-h host]
[-l user] [-e var[= val] [...]] [-sp paths]
[-commd] program [args]

• bsub [lsf_options] pam -mpi mpirun [-help][-version]
[-jpvW] [-t spec] [-i spec] [-commd] -f appfile

where

-np # Specifies the number of processes to run.

-help Prints usage information for the utility.

-version Prints the version information.

-j Prints the HP MPI job ID.

-p Turns on pretend mode. That is, go through the
motions of starting an HP MPI application but do not
create any processes. This is useful for debugging and
checking whether the appfile (if used) is set up
correctly.

-v Turns on verbose mode.

-W Does not wait for the application to terminate before
returning.

-t spec Enables run-time raw trace generation for all
processes. spec specifies options used when tracing. See
“MPI_XMPI” on page 49 for the list of options you can
use.

56 Chapter 3

Understanding HP MPI
Running applications

-i spec Enables run-time instrumentation profiling for all
processes. spec specifies options used when profiling.
See “MPI_INSTR” on page 51 for the list of options you
can use.

-h host Starts the processes on host (default is local_host).

-l user Specifies the user name on the target host (default is
local username).

-e var[= val] Sets the environment variable var for the program and
gives it the value val if provided. Environment variable
substitutions (for example, $FOO) are supported in the
val argument.

-sp paths Sets the target shell PATH environment variable to
paths. Search paths are separated by the colon (:)
character.

program Specifies the name of the executable to run.

args Specifies command-line arguments to the program.

lsf_options Specifies bsub options that the load-sharing facility
(LSF) applies to the entire job (that is, every host).
Refer to the bsub(1) man page for a list of options you
can use. Note that LSF must be installed for lsf_options
to work correctly.

-commd Routes all off-host communication through daemons
rather than between processes. See “Communicating
using daemons” on page 62 for more information.

-f appfile Starts the application described in appfile.

Use the first syntax for applications where all processes execute the
same program on the same host. For example:

% mpirun -j -np 3 send_receive

runs the send_receive application with three processes and prints out the
job ID.

Chapter 3 57

Understanding HP MPI
Running applications

Use the second syntax for applications that consist of multiple programs
or that run on multiple hosts or subcomplexes. In this case, each
program called by the application is listed in a file called an appfile. For
example:

% mpirun -t my_trace:k -f my_appfile

enables tracing, sets the prefix of the tracing output file to my_trace,
specifies that the raw trace files are kept, and runs an appfile named
my_appfile.

Use the third syntax to invoke LSF for applications where all processes
execute the same program on the same host. In this case, LSF assigns a
host to the MPI job. For example:

% bsub pam -mpi mpirun -np 4 compute_pi

requests a host assignment from LSF and runs the compute_pi
application with four processes. See “Assigning hosts using LSF” on
page 64 for more information.

Use the fourth syntax to invoke LSF for applications that run on
multiple hosts. Each host specified in the appfile is treated as a symbolic
name, referring to the host that LSF assigns to the MPI job. For example:

% bsub pam -mpi mpirun -f my_appfile

runs an appfile named my_appfile and requests host assignments for all
remote and local hosts specified in my_appfile. If my_appfile contains

-h voyager -np 10 send_receive
-h enterprise -np 8 compute_pi

host assignments are returned for the two symbolic links voyager and
enterprise. See “Assigning hosts using LSF” on page 64 for more
information.

When requesting a host from LSF, you must ensure that your
executable’s path is accessible by all machines in the resource pool.

58 Chapter 3

Understanding HP MPI
Running applications

Creating an appfile
The format of entries in an appfile is line oriented. Lines that end with
the blackslash (\) character are continued on the next line, forming a
single logical line. A logical line starting with the pound (#) character is
treated as a comment. Each program, along with its arguments, is listed
on a separate logical line.

You can specify the -h , -l , -np , -e , and -sp options (from the mpirun
command) in an appfile. Options following a program name are treated
as the program’s command line arguments and are not processed by
mpirun .

The ranks of the processes in MPI_COMM_WORLD are guaranteed to
be ordered according to their sequential order in an appfile.

The general form of an appfile entry is:

[-h remote_host] [-e var[= val] [...]] [-l user] [-sp paths]
[-np #] program [args]

where

-h remote_host Specifies the remote host where a remote executable is
stored (defaults to local host). remote_host is either a
host name or an IP address.

-e var=val Sets the environment variable var for the program and
gives it the value val if provided (defaults to not setting
environment variables).

-l user Specifies the user name on the target host (default is
current user name).

-sp paths Sets the target shell PATH environment variable to
paths. Search paths are separated by the colon (:)
character (default is do not override the path).

-np # Specifies the number of processes to run (defaults to
one).

program Specifies the name of the executable to run. The
executable is searched for in $PATH.

args Specifies command line arguments to the program.

Chapter 3 59

Understanding HP MPI
Running applications

One way to set environment variables on remote hosts is to use the -e
option in the appfile:

-h remote_host -e MPI_TOPOLOGY= val [-np #] program [args]

mpijob
mpijob lists the HP MPI jobs running on the system. The mpijob
syntax is shown below:

mpijob [-help] [-a] [-u] [-j id [...]]

where

-help Prints usage information for the utility.

-a Lists jobs for all users.

-u Sorts jobs by user name.

-j id Provides process status for job id.

When invoked, mpijob reports the following information for each job:

JOB HP MPI job identifier.

USER User name of the owner.

NPROCS Number of processes.

PROGNAME Program names used in the HP MPI application.

By default, your jobs are listed by job ID in increasing order. However,
you can specify the -a and -u options to change the default behavior.

If you specify the -j option, mpijob reports the following information for
each job:

RANK Rank for each process in the job.

HOST Host where the job is running.

PID Process identifier for each process in the job.

LIVE Option that indicates whether the process is running
(an x is used) or has been terminated.

PROGNAME Program names used in the HP MPI application.

60 Chapter 3

Understanding HP MPI
Running applications

An mpijob output using the -a and -u options is shown below. The
output lists jobs for all users and sorts them by user name.

JOB USER NPROCS PROGNAME
22623 charlie 12 /home/watts
22573 keith 14 /home/richards
22617 mick 100 /home/jagger
22677 ron 4 /home/wood

NOTE Invoke mpijob on the host on which you initiated mpirun .

mpiclean
mpiclean kills lingering processes in a running HP MPI application.
mpiclean syntax has three forms:

• mpiclean [-help] [-v] -j id [...]

• mpiclean [-help] [-v] [-sc name | -scid id] prog [...]

• mpiclean [-help] [-v] -m

where

-help Prints usage information for the utility.

-v Turns on verbose mode.

-m Cleans up your shared-memory segments.

-j id Kills the processes of job number id. You can specify
multiple job IDs.

-sc name Restricts the operation to the named subcomplex. This
option is mutually exclusive with the -scid option.

-scid id Restricts the operation to subcomplex number id. This
option is mutually exclusive with the -sc option.

prog Specifies the binary filename to kill. You can specify
multiple filenames.

The first syntax is used for all servers. The second syntax is provided for
backward compatibility on servers running under SPP-UX. The third
syntax is used when an application aborts during MPI_Init , and the
termination of processes does not destroy the allocated shared-memory
segments.

Chapter 3 61

Understanding HP MPI
Running applications

The MPI library checks for abnormal termination of processes while your
application is running. In some cases, application bugs can cause
processes to deadlock and linger in the system. When this occurs, you can
use mpijob to identify hung jobs and mpiclean to kill all processes in
the hung application.

There are two ways to kill an HP MPI application. The preferred way is
to provide mpiclean with the application’s job ID (obtained by using the
-j option when invoking mpirun). However, you can only kill jobs that
you own.

The second way is only provided on servers running under SPP-UX for
backward compatibility. In this approach, you specify mpiclean with a
list of binary filenames you own. mpiclean locates the matching
processes and kills them.

You can restrict the second cleanup method to a single subcomplex by
using the -sc or -scid options. This is helpful in cases where the same
code is running independently on several subcomplexes and only one of
these applications needs to be killed.

NOTE Invoke mpiclean on the host on which you initiated mpirun .

xmpi
xmpi invokes the XMPI utility. The xmpi syntax is shown below:

xmpi [-h][-bg arg][-bd arg][-bw arg][-display arg]
[-fg arg] [-geometry arg][-iconic][-title arg]

where

-h Prints usage information for the utility.

-bg arg Specifies the background color.

-bd arg Denotes the border color.

-bw arg Specifies the width of the border in pixels.

-display arg Designates the X-window display server to use.

-fg arg Specifies the foreground color.

-geometry arg Specifies size and position.

-iconic Designates that the application start as an icon.

-title arg Specifies the title of the application.

For more information, see “Using XMPI” on page 71.

62 Chapter 3

Understanding HP MPI
Running applications

mpiview
mpiview invokes the mpiview utility. The mpiview utility displays
counter instrumentation data in graphical form. The mpiview syntax is
shown below:

mpiview [prefix .mpiview]

where prefix.mpiview specifies the name of the instrumentation profile
(in internal format) created by using the mpirun command with the
-i option. For more information, see “Creating an instrumentation
profile” on page 66 and the mpiview.1 man page.

Communicating using daemons
By default, off-host communication between processes is implemented
using direct socket connections between process pairs. For example, if
process A on host1 communicates with processes D and E on host2, then
process A sends messages using a separate socket for each process D and
E.

This is referred to as the n-squared or direct approach because to run an
n-process application, n2 sockets are required to allow processes on one
host to communicate with processes on other hosts. If you use the
direct approach, you should be careful that the total number of open
sockets does not exceed the system limit.

You can also use an indirect approach and specify that all off-host
communication occur between daemons. In this case, the processes on a
host use shared memory to send messages to and receive messages from
the daemon. The daemon, in turn, uses a socket connection to
communicate with daemons on other hosts.

In an appfile (multihost applications), the first process created for each
appfile entry becomes the communication daemon for that application.
Use the MPI_TOPOLOGY environment variable to decide where the first
process should run.

Chapter 3 63

Understanding HP MPI
Running applications

Figure 5 shows the structure for daemon communication.

 Figure 5 Daemon communication

To use daemon communication, specify the -commd option in the mpirun
command. See “mpirun” on page 55 for more information. Once you have
set the -commd option, you can use the MPI_COMMD environment variable
to specify the number of shared-memory fragments used for inbound and
outbound messages. See “MPI_COMMD” on page 52 for more
information.

Daemon communication may result in lower application performance.
Therefore, use it only when scaling an application to a large number of
hosts.

host1 host2

Daemon
process

Daemon
process

A

B C F

EApplication

 Socket
connection

 processes

 Outbound/Inbound
 shared-memory
 fragments

64 Chapter 3

Understanding HP MPI
Running applications

Assigning hosts using LSF
The load-sharing facility (LSF) allocates one or more hosts to run an MPI
job. In general, LSF improves resource utilization for MPI jobs that run
in multihost environments.

By default, mpirun maps host names to IP addresses for single-host and
multihost jobs. You can use LSF to perform this mapping by specifying a
variant of mpirun to execute your job. Using LSF improves resource
utilization

For example, to execute a single-host job on a local host, enter:

%bsub [lsf_options] pam -mpi mpirun [-np #] [-help]
[-version] [-jpvW] [-t spec] [-i spec] [-h host]
[-l user] [-e var[= val] [...]] [-sp paths]
[-commd] program [args]

where lsf_options specifies bsub options that LSF applies to the local
host. Refer to the bsub(1) man page for a list of LSF options you can use.

To execute a multihost job using an appfile, enter:

%bsub [lsf_options] pam -mpi mpirun [-help]
[-version] [-jpvW] [-t spec] [-i spec] [-commd] -f
appfile

where lsf_options specifies bsub options that LSF applies to all hosts in
the appfile, and appfile contains entries of the form:

-h sockeye -np 6 send_receive
-h jawbone -np 4 compute_pi

In this case, the hosts sockeye and jawbone are treated as symbolic
names that refer to the hosts that LSF eventually allocates to each job
respectively.

See “mpirun” on page 55 for more information about the mpirun options
you can use.

Chapter 4 65

4 Profiling

This chapter provides information about utilities used to analyze
HP MPI applications. The topics covered are:

• Using counter instrumentation

• Using XMPI

• Using CXperf

• Using the profiling interface

66 Chapter 4

Profiling
Using counter instrumentation

Using counter instrumentation
Counter instrumentation provides cumulative statistics about your
applications. Once you have created an instrumentation profile, you can
view the data either in human-readable format or in internal format
using the mpiview utility.

Creating an instrumentation profile
To create an instrumentation profile, enter:

% mpirun -i spec -np # program

where

-i spec Enables run-time instrumentation profiling for all
processes. spec provides options used when profiling.
See “MPI_INSTR” on page 51 for more information
about options you can use.

You must specify the -i option before the program
name.

-np # Specifies the number of processes to run.

program Specifies the name of the executable to run.

For example, to create an instrumentation profile for an application
called compute_pi.f, enter:

% mpirun -i compute_pi -np 2 compute_pi

This invocation creates an instrumentation profile in two formats:
compute_pi.instr (human-readable) and compute_pi.mpiview (internal).

HP MPI provides the nonstandard MPIHP_Trace_on and
MPIHP_Trace_off routines to collect profile information for selected
code sections only (by default, the entire application is profiled from
MPI_Init to MPI_Finalize). You insert the MPIHP_Trace_on and
MPIHP_Trace_off pair around code that you want to profile. Then, you
build the application and invoke mpirun with the :off option.

Chapter 4 67

Profiling
Using counter instrumentation

Viewing the human-readable format
To view an instrumentation profile in human-readable format, print
prefix.instr (in the case of the compute_pi.f application, this is
compute_pi.instr).

The overhead time in the profile represents the time a process or routine
spends inside MPI. For example, the time a process spends doing
message packing.

The blocking time represents the time a process or routine is blocked
waiting for a message to arrive before resuming execution.

The profile also includes density information that shows rank-by-peer
data for MPI time and messages.

The contents of compute_pi.instr are shown below.

Version: HP MPI B6011/B6280 - HP-UX 10.20

Date: Mon Feb 2 17:36:59 1998
Scale: Wall Clock Seconds
Processes: 2
User: 33.65%
MPI: 66.35% [Overhead:66.35% Blocking:0.00%]

Total Message Count: 4

Minimum Message Range: 4 [0..32]
Maximum Message Range: 4 [0..32]
Average Message Range: 4 [0..32]

Top Routines:

MPI_Init 86.39% [Overhead:86.39% Blocking: 0.00%]
MPI_Bcast 12.96% [Overhead:12.96% Blocking: 0.00%]
MPI_Finalize 0.43% [Overhead: 0.43% Blocking: 0.00%]
MPI_Reduce 0.21% [Overhead: 0.21% Blocking: 0.00%]

Communication Hot Spots:

Minimum Pair: 6.58% Rank:0 Rank:0
Maximum Pair: 6.60% Rank:0 Rank:1
Average Pair: 6.59%

Rank:0 Rank:1 6.60% [Overhead: 6.60% Blocking: 0.00%]
Rank:0 Rank:0 6.58% [Overhead: 6.58% Blocking: 0.00%]

--
---------------- Instrumentation Data ---------------
--

Application Summary by Rank:

68 Chapter 4

Profiling
Using counter instrumentation

Rank Duration Overhead Blocking User MPI
--
1 0.248998 0.221605 0.000000 11.00% 89.00%
0 0.249118 0.108919 0.000000 56.28% 43.72%
--

Routine Summary:

Routine Calls Overhead Blocking
--
MPI_Init 2 0.285536 0.000000
min 0.086926 0.000000
max 0.198610 0.000000
avg 0.142768 0.000000
MPI_Bcast 2 0.042849 0.000000
min 0.021393 0.000000
max 0.021456 0.000000
avg 0.021424 0.000000
MPI_Finalize 2 0.001434 0.000000
min 0.000240 0.000000
max 0.001194 0.000000
avg 0.000717 0.000000
MPI_Reduce 2 0.000705 0.000000
min 0.000297 0.000000
max 0.000408 0.000000
avg 0.000353 0.000000
--

Routine Summary by Rank:

Routine Rank Calls Overhead Blocking
--
MPI_Init 0 1 0.086926 0.000000
 1 1 0.198610 0.000000
MPI_Bcast 0 1 0.021456 0.000000
 1 1 0.021393 0.000000
MPI_Finalize 0 1 0.000240 0.000000
 1 1 0.001194 0.000000
MPI_Reduce 0 1 0.000297 0.000000
 1 1 0.000408 0.000000
--

Routine Summary by Rank and Peer:

Routine Rank Peer Calls Overhead Blocking
--
MPI_Bcast 0 0 1 0.021456 0.000000
 1 0 1 0.021393 0.000000
MPI_Reduce 0 0 1 0.000297 0.000000
 1 0 1 0.000408 0.000000
--

Message Summary:

Routine Message Bin Count
--

Chapter 4 69

Profiling
Using counter instrumentation

MPI_Bcast [0..32] 2
MPI_Reduce [0..32] 2
--

Message Summary by Rank:

Routine Rank Message Bin Count
--
MPI_Bcast 0 [0..32] 1
 1 [0..32] 1
MPI_Reduce 0 [0..32] 1
 1 [0..32] 1
--

Message Summary by Rank and Peer:

Routine Rank Peer Message Bin Count
--
MPI_Bcast 0 0 [0..32] 1
 1 0 [0..32] 1
MPI_Reduce 0 0 [0..32] 1
 1 0 [0..32] 1
--

70 Chapter 4

Profiling
Using counter instrumentation

Using mpiview
To view an instrumentation profile in internal format, invoke the
mpiview utility and load prefix.mpiview (in the case of the compute_pi.f
application, this is compute_pi.mpiview). mpiview displays profile data
in graphical form.

An example of one of the displays provided by mpiview is shown below.
For more information about using mpiview, refer to the mpiview.1 man
page.

Chapter 4 71

Profiling
Using XMPI

Using XMPI
XMPI is an X/Motif graphical user interface for running applications,
monitoring processes and messages, and viewing trace files. XMPI
provides a graphical display of the state of processes within an HP MPI
application.

XMPI is useful when analyzing programs at the application level (for
example, examining HP MPI data types and communicators). You can
run XMPI without having to recompile or relink your application.

XMPI runs in one of two modes: postmortem mode or interactive mode.
In postmortem mode, you can view trace information for each process in
your application. In interactive mode, you can monitor process
communications by taking snapshots while your application is running.

The default X resource settings that determine how XMPI displays on
your workstation are stored in /opt/mpi/lib/X11/app-defaults/XMPI. See
“XMPI resource file” on page 151 for a list of these settings.

72 Chapter 4

Profiling
Using XMPI

Working with postmortem mode
To use XMPI’s postmortem mode, you must first create a trace file. Then,
you can load this file into XMPI to view state information for each
process in your application.

Creating a trace file
To create a trace file, enter:

% mpirun -t spec -np # program

where

-t spec Enables run-time raw trace generation for all
processes. spec specifies options used when tracing. See
“MPI_XMPI” on page 49 for information about options
you can specify.

You must specify the -t option before the program
name.

-np # Specifies the number of processes to run.

program Specifies the name of the executable to run.

When you use the -t option to enable trace generation, you must specify
the prefix name used for each raw trace file as part of spec. Then, when
mpirun is invoked, a raw trace dump, prefix.n, is created for each
application process where n ranges from 0 to (# - 1). MPI_Finalize
consolidates all the raw trace dump files into a single file (prefix.tr) that
you can load into XMPI.

HP MPI provides the nonstandard MPIHP_Trace_on and
MPIHP_Trace_off routines to help troubleshoot application problems.
You insert the MPIHP_Trace_on and MPIHP_Trace_off pair around
suspect code in your application. Then, you build the application and
invoke mpirun with -t:off to enable application tracing. The trace
information collected is only for the code between MPIHP_Trace_on and
MPIHP_Trace_off . You can then run the trace file in XMPI to identify
problems during application execution.

NOTE MPIHP_Trace_on and MPIHP_Trace_off are collective routines and
must be called by all ranks in your application. Otherwise, the application will
deadlock.

Chapter 4 73

Profiling
Using XMPI

Viewing a trace file
Use these instructions to view a trace file:

Step 1. Enter xmpi to open the XMPI main window (see “xmpi” on page 61 for
information about other options you can specify).

74 Chapter 4

Profiling
Using XMPI

Step 2. Select View from the Trace menu to open the XMPI Trace Selection
dialog.

Chapter 4 75

Profiling
Using XMPI

Step 3. Type the full path name of the appropriate trace file in the Selection field
and choose View to open the XMPI Trace dialog.

When viewing trace files containing multiple segments (that is, multiple
MPIHP_Trace_on and MPIHP_Trace_off pairs), XMPI prompts you for
the number of the segment you want to view. If you want to view a
different segment later, simply reload the trace file and specify the new
segment number when prompted.

The XPMI Trace dialog consists of an icon bar across the top, the current
magnification and dial time just below, and a trace log display area below
that.

The icon bar contains icons that (from left to right):

• Increase the magnification of the trace log.

• Decrease the magnification of the trace log.

• Rewind the trace log to the beginning. Dial time is also reset to the
beginning.

Icon bar Trace log display area

Dial time line

76 Chapter 4

Profiling
Using XMPI

• Stop playing the trace log.

• Play the trace log.

• Fast forward the trace log.

To set the magnification for viewing a trace file, select the Increase or
Decrease icon on the icon bar.

The dial time indicates how long the application has been running in
seconds.

The trace log display area shows a separate trace for each process in the
application. Dial time is represented as a vertical line. The rank for each
process is shown where the dial time line intersects a process trace.

The state of a process at any time is indicated by one of three colors:

Green Signifies that a process is running outside MPI.

Red Denotes that a process is blocked, waiting for
communication to finish before the process resumes
execution.

Yellow Represents a process’s overhead time inside MPI (for
example, time spent doing message packing).

Blocking point-to-point communications are represented by a trace for
each process showing the time spent in system overhead and time spent
blocked waiting for communication. A line is drawn connecting the
appropriate send and receive trace segments. The line starts at the
beginning of the send segment and ends at the end of the receive
segment.

For nonblocking point-to-point communications, a system overhead
segment is drawn when a send and receive are initiated. When the
communication is completed using a wait or a test, segments are drawn
showing system overhead and blocking time. Lines are also drawn
between matching sends and receives, except in this case, the line is
drawn from the segment where the send was initiated to the segment
where the corresponding receive completed.

Collective communications are also represented by a trace for each
process showing the time spent in system overhead and time spent
blocked waiting for communication.

Chapter 4 77

Profiling
Using XMPI

Some send and receive segments may not have a matching segment. In
this case, a stub line is drawn out of the send segment or into the receive
segment.

To play the trace file, select the Play or Fast forward icons on the icon
bar. For any given dial time, the state of the trace file is reflected in the
main window, the Focus dialog, the Datatype dialog, and the Kiviat
dialog.

78 Chapter 4

Profiling
Using XMPI

Viewing process information
Use these instructions to view process information:

Step 1. Start XMPI and open a trace for viewing. The XMPI main window fills
with a group of tiled hexagons, each representing the current state of a
process and labelled by the process’s rank within MPI_COMM_WORLD.

The current state of a process is indicated by the color of the signal light
(either green, red, or yellow) in the hexagon. This color corresponds to
the elapsed run time (current dial time) of the trace file in the XMPI
Trace dialog. As the trace file is played, the color changes as processes
communicate with each other.

Chapter 4 79

Profiling
Using XMPI

Step 2. Select the hexagon representing the process you want more information
about to open the XMPI Focus dialog.

The XMPI Focus dialog consists of a process area and a message queue
area.

The values in the process area and message queue area fields correspond
to the current dial time of the trace file in the XMPI Trace dialog. As the
trace file is played, the values in the fields change as processes
communicate with each other.

The process area describes the state of a process together with the name
and arguments for the HP MPI function being executed. The fields
include:

peer Displays the rank of the displayed function’s peer
process. A process is identified by its rank in
MPI_COMM_WORLD, a slash (/), and the rank of the
process within the current communicator.

comm Shows the communicator being used by the HP MPI
function. If you select the icon to the right of the comm
field, the hexagons for processes that belong to the
communicator are highlighted in the XMPI main
window.

tag Displays the value of the tag argument associated with
the message.

Process area

Message queue
 area

80 Chapter 4

Profiling
Using XMPI

cnt Shows the count of the message data elements
associated with the message when it was sent. Select
the icon to the right of the cnt field to open the XMPI
Datatype dialog.

The XMPI Datatype dialog displays the type map of the
data type associated with the message when it was
sent. This data type can be one of the predefined data
types or a user-defined data type.

The data type shown corresponds to the current dial
time of the trace file in the XMPI Trace dialog. As the
trace file is played, the data type changes as processes
communicate with each other.

The message queue area describes the current state of the queue of
messages sent to the process but not yet received. The fields include:

src Displays the rank of the process sending the message.
A process is identified by its rank in
MPI_COMM_WORLD, a slash (/), and the rank of the
process within the current communicator.

comm Shows the communicator being used by the HP MPI
function. If you select the icon to the right of the comm
field, the hexagons for processes that belong to the
communicator are highlighted in the XMPI main
window.

tag Displays the value of the tag argument associated with
the message when it was sent.

cnt Shows the count of the message data elements
associated with the message when it was sent. If you
select the icon to the right of the cnt field, the XMPI

Chapter 4 81

Profiling
Using XMPI

Datatype dialog displays. The XMPI Datatype dialog
displays the type map of the data type associated with
the message when it was sent.

copy Displays the number of copies of the message that was
sent. For example, if a process sends 10 messages to
another process where six of the messages have one
type of message envelope and the remaining four have
another, the copy field toggles between 6 of 10 and 4 of
10. In this case, a message envelope consists of the
sender, the communicator, the tag, the count, and the
data type.

This behavior results from treating the six messages
that all have the same envelope as one copy and the
remaining four messages as a different copy. That way,
if a communication involves a hundred messages all
having the same envelope, you can work with a single
copy rather than a hundred copies.

Step 3. Select Quit from the Application menu to close XMPI.

82 Chapter 4

Profiling
Using XMPI

Viewing kiviat information
Kiviat graphs are used to display performance data. Use these
instructions to view kiviat information from a trace file.

Step 1. Start XMPI and open a trace for viewing.

Step 2. Select Kiviat from the Trace menu to open the XMPI Kiviat dialog.

The XMPI Kiviat dialog shows, in a segmented pie-chart format, the
cumulative time up to the current dial time spent by each process in the
running, overhead, and blocked states.

The cumulative time for each process corresponds to the current dial
time of the trace file in the XMPI Trace dialog. As the trace file is played,
the cumulative time changes as processes communicate with each other.

You can use the kiviat view to determine whether processes are load
balanced and applications are synchronized. If an application is load
balanced, the amount of time processes spend in each state should be
equal. If an application is synchronized, the segments representing each
of the three states should be concentric.

Step 3. Select Quit from the Application menu to close XMPI.

Chapter 4 83

Profiling
Using XMPI

Working with interactive mode
Interactive mode allows you to load and run an existing appfile to view
state information for each process in your application.

Running an appfile
Use these instructions to run and view an appfile:

Step 1. Enter xmpi to open the XMPI main window (see “xmpi” on page 61 for
information about other options you can specify).

Step 2. Select Browse&Run from the Application menu to open the XMPI
Application Browser dialog.

Chapter 4 84

Profiling
Using XMPI

Step 3. Type the full path name of an existing appfile in the Selection field and
choose Run. The XMPI main window fills with a group of tiled hexagons,
each representing the current state of a process and labelled by the
process’s rank within MPI_COMM_WORLD.

The current state of a process is indicated by the color of the signal light
(either green, red, or yellow) in the hexagon. These process hexagons
disappear when the application has run to completion.

Chapter 4 85

Profiling
Using XMPI

Interactive mode provides the snapshot utility to help debug
applications that hang. If automatic snapshot is enabled, XMPI takes
periodic snapshots of the application and displays state information for
each process on the XMPI main window, the XMPI Focus dialog, and the
XMPI Datatype dialog. You can use this information to view the state of
each process while the application hangs.

If automatic snapshot is disabled, XMPI displays information for each
process when the application begins, but this information is not updated.

Regardless of whether automatic snapshot is enabled, you can take
application snapshots manually by selecting Snapshot from the
Application menu. In this case, XMPI displays information for each
process, but this information is not updated until you take the next
snapshot.

You can take snapshots only when an appfile is running. Also, you cannot
replay snapshots like trace files.

At any time while your application is running, you can select Dump from
the Trace menu to open the XMPI Dump dialog.

The Dump option is only available if you have previously selected the
Tracing button on the mpirun options trace dialog. Selecting Dump
consolidates all raw trace-file data collected up to that point into a
single .tr output file.

The single field specifies the name of the consolidated .tr output file. The
value you specified for the Prefix field in the mpirun options trace dialog
is automatically loaded. You can use this name or choose another. After
you have created the .tr output file, you can resume snapshot monitoring.

86 Chapter 4

Profiling
Using XMPI

You can also select Express from the Trace menu while your application
is running to open the XMPI Express dialog.

As with the Dump option, the Express option is only available if you have
previously selected the Tracing button on the mpirun options trace
dialog.

The fields include:

Terminate the
application and
get full trace Specifies that the contents of each process buffer

(whether partial or full up to that point) are written to
a raw trace file. These raw trace files are then
consolidated in a .tr output file (previously specified in
the Prefix field of the mpirun options trace dialog).
Last, the .tr output file is loaded and displayed in the
XMPI Trace dialog for viewing.

When you select this field, the XMPI Confirmation
dialog displays asking if you are sure you want to
terminate the application. You must select Yes before
processing will continue.

After the .tr output file is loaded and displayed in the
XMPI Trace dialog, you cannot resume snapshot
monitoring (the application should have already
terminated).

Chapter 4 87

Profiling
Using XMPI

Get partial trace
that processes
dump at every
4096 kilobytes Specifies that the contents of each process buffer are

written to a raw trace file only after the buffer becomes
full. These raw trace files are then consolidated to a .tr
output file (previously specified in the Prefix field of the
mpirun options trace dialog). Last, the .tr output file is
loaded and displayed in the XMPI Trace dialog for
viewing.

After the .tr output file is loaded and displayed in the
XMPI Trace dialog, you cannot resume snapshot
monitoring even though the application may still be
running.

When using interactive mode, XMPI gathers and displays data from the
running appfile or a trace file.

When an application is running, the data source is the appfile, and
automatic snapshot is enabled. Even though the application may be
creating trace data, the snapshot function does not use it. Instead, the
snapshot function acquires data from internal hooks in HP MPI.

At any point in interactive mode, you can load and view a trace file using
the View or Express commands under the Trace menu.

When you use the View or Express commands to load and view a trace
file, the data source switches to the loaded trace file, and the snapshot
function is disabled. You must rerun your application to switch the data
source from a trace file back to an appfile.

Step 4. Select Clean from the Application menu at any time to kill the
application and close any associated XMPI Focus and XMPI Datatype
dialogs. The XMPI Confirmation dialog displays asking if you are sure
you want to terminate the application.

Step 5. Select Yes to terminate your application and close any associated dialogs.
You can then run another application by selecting an appfile from the
XMPI Application Browser dialog.

88 Chapter 4

Profiling
Using XMPI

Changing default settings and viewing options
You should initially run your appfile using the XMPI default settings.
You can change these default settings and your viewing options later if
you like.

Use these instructions to change XMPI’s default settings and your
viewing options:

Step 1. Enter xmpi to open the XMPI main window (see “xmpi” on page 61 for
information about other options you can specify).

Step 2. Select Monitoring from the Options menu to open the XMPI monitor
options dialog.

The fields include:

Automatic
snapshot Enables the automatic snapshot function. If automatic

snapshot is enabled, XMPI takes snapshots of the
application you are running and displays state
information for each process.

If automatic snapshot is disabled, XMPI displays
information for each process when the application
begins. However, you can only update this information
manually. Disabling automatic snapshot may lead to
buffer overflow problems because the contents of each
process buffer are unloaded every time a snapshot is
taken. For communication-intensive applications,
process buffers can quickly fill and overflow.

Chapter 4 89

Profiling
Using XMPI

You can enable or disable automatic snapshot while
your application is running. This could be useful during
troubleshooting when the application has run to a
certain point and you want to disable automatic
snapshot to study process state information.

Monitor interval
in second Determines how often XMPI takes a snapshot when

automatic snapshot is enabled.

Step 3. Select Buffers from the Options menu to open the XMPI buffer size
dialog.

The single field specifies the size of each process buffer. When you run an
application, state information for each process is stored in a separate
buffer. You may need to increase buffer size if overflow problems occur.

90 Chapter 4

Profiling
Using XMPI

Step 4. Select mpirun from the Options menu to open the mpirun options dialog.

The fields include:

Print job ID Enables printing of the HP MPI job ID.

Verbose Enables verbose mode.

Tracing Enables run-time raw trace generation for all
application processes. If you select the Tracing button,
the mpirun options trace dialog is opened.

Chapter 4 91

Profiling
Using XMPI

The fields include:

Prefix Specifies the prefix name for the file where each
process writes its own raw trace data. Each process
creates its own filename by concatenating the prefix, a
period, and the process’s global rank number. This is a
required field.

No clobber Specifies no clobber, which means that an HP MPI
application aborts if a file with the name specified in
the Prefix field already exists.

Initially off Specifies that trace generation is initially turned off.

Simpler trace Specifies a simpler tracing mode by omitting
MPI_Test , MPI_Testall , MPI_Testany , and
MPI_Testsome calls that do not complete a request.

No format at
MPI_Finalize() Specifies that raw trace files are not consolidated into a

single .tr output file when MPI_Finalize is called.
Raw trace-file consolidation can add substantially to
the MPI_Finalize time when working with large
applications.

Keep raw traces
after formatting Specifies that raw trace files are saved after they are

consolidated by MPI_Finalize . The default is to
delete raw trace files after consolidation.

Buffer size Denotes the buffering size in kilobytes for dumping raw
trace data. Actual buffering size may be rounded up by
the system. The default buffering size is 4096 kilobytes.
Specifying a large buffering size reduces the need to
flush raw trace data to a file when process buffers
reach capacity. Flushing too frequently can increase
the overhead for I/O. If this problem occurs, increase
the buffering size.

92 Chapter 4

Profiling
Using CXperf

Using CXperf
CXperf allows you to profile each process in an HP MPI application. The
profile information is stored in a separate performance data file. During
analysis, you merge the data from these separate files into a single
performance data file for the application.

With CXperf, you can analyze the data in the performance data file using
one or more of the following metrics:

• Wall clock time

• CPU time

• Execution counts

• Cache miss counts

• Latency time

• Dynamic call graph

• Migrations

• Context switches

• Page faults

• Instruction counts

• Data transaction lookaside buffer (TLB) misses

• Instruction TLB misses

You can display the data as a 3D profile, a 2D profile, a report, or a
dynamic call graph. For more information, see CXperf User’s Guide and
CXperf Command Reference.

Chapter 4 93

Profiling
Using the profiling interface

Using the profiling interface
MPI provides a profiling interface for collecting statistics and measuring
performance. The profiling interface allows you to intercept calls to the
MPI library at link time and perform some action. For example, you may
want to measure the time spent in each call to a certain library routine
or create a logfile.

All routines in the MPI library begin with the MPI prefix. Based on the
MPI standard, these routines are also callable using the PMPI prefix (for
example, PMPI_Send).

To use the profiling interface, write wrapper versions of the MPI library
routines you want the linker to intercept. These wrapper routines collect
data for some statistic or perform some other action. The wrapper then
calls its corresponding routine in the MPI library using its PMPI prefix.

For example, suppose you want to measure the elapsed time for each call
to MPI_Send . In this case, you create a wrapper called MPI_Send that
uses PMPI_Wtime to measure the elapsed time for each call. MPI_Send
then calls PMPI_Send to actually send the message.

94 Chapter 4

Profiling
Using the profiling interface

Chapter 5 95

5 Tuning

This chapter provides information about tuning applications to improve
performance. The topics covered are:

• General tuning

• SPP-UX platform tuning

General tuning information applies to all applications running on
HP-UX and SPP-UX platforms. SPP-UX tuning information applies only
to applications running on that platform.

NOTE The tuning information in this chapter improves application performance in
most but not all cases. Use the output from counter instrumentation or XMPI
to determine which tuning changes are appropriate.

96 Chapter 5

Tuning
General tuning

General tuning
When you developHP MPI applications, several factors can affect
performance. These factors include:

• Message latency and bandwidth

• Multiple network interfaces

• Processor subscription

• MPI routine selection

Message latency and bandwidth
Latency is the time between the initiation of the data transfer in the
sending process and the arrival of the first byte in the receiving process.

Latency is often dependent upon the length of messages being sent. An
application’s messaging behavior can vary greatly based upon whether a
large number of small messages or a few large messages are sent.

Message bandwidth is the reciprocal of the time needed to transfer a
byte. Bandwidth is normally expressed in megabytes per second.
Bandwidth becomes important when message sizes are large.

To improve latency or bandwidth or both:

• Reduce the number of process communications by designing
coarse-grained applications.

• Use derived, contiguous data types for dense data structures to
eliminate unnecessary byte-copy operations in certain cases. Use
derived data types instead of MPI_Pack and MPI_Unpack if possible.
HP MPI optimizes noncontiguous transfers of derived data types.

• Use collective operations whenever possible. This eliminates the
overhead of using MPI_Send and MPI_Recv each time when one
process communicates with others. Also, use the HP MPI collectives
rather than customizing your own. HP MPI collectives have
three-level optimizations when used in a NUMA environment.

• Specify the source process rank whenever possible when calling
MPI routines. Using MPI_ANY_SOURCE may increase latency.

Chapter 5 97

Tuning
General tuning

• Double-word align data buffers if possible. This improves byte-copy
performance between sending and receiving processes because of
double-word loads and stores.

• Use MPI_Recv_init and MPI_Startall instead of a loop of
MPI_Irecv calls in cases where requests may not complete
immediately.

For example, suppose you write an application with the following code
section:

j = 0
for (i=0; i<size; i++) {
 if (i==rank) continue;
 MPI_Irecv(buf[i], count, dtype, i, 0, comm, &requests[j++]);
}
MPI_Waitall(size-1, requests, statuses);

Suppose that one of the iterations through MPI_Irecv does not
complete before the next iteration of the loop. In this case, HP MPI
tries to progress both requests. This progression effort could continue
to grow if succeeding iterations also do not complete immediately,
resulting in a higher latency.

However, you could rewrite the code section as follows:

j = 0
for (i=0; i<size; i++) {
 if (i==rank) continue;
 MPI_Recv_init(buf[i], count, dtype, i, 0, comm,
&requests[j++]);
}
MPI_Startall(size-1, requests);
MPI_Waitall(size-1, requests, statuses);

In this case, all iterations through MPI_Recv_init are progressed
just once when MPI_Startall is called. This approach avoids the
additional progression overhead when using MPI_Irecv and can
reduce application latency.

98 Chapter 5

Tuning
General tuning

Multiple network interfaces
You can use multiple network interfaces for interhost communication
while still having intrahost exchanges. In this case, the intrahost
exchanges use shared memory between processes mapped to different
same-host IP addresses.

To use multiple network interfaces, you must specify which MPI
processes are associated with each IP address in your appfile. To improve
performance, use the MPI_TOPOLOGY environment variable to associate
each network interface with the hypernode where it physically resides on
SPP-UX.

For example, suppose you have two hosts called host0 and host1 that
each communicate using the two HIPPI cards hippi0 and hippi1. Assume
the network interfaces are named:

• host0-hippi0

• host0-hippi1

• host1-hippi0

• host1-hippi1

If your executable is called beavis.exe and uses 64 processes, your appfile
should contain the following entries:

-h host0-hippi0 -e MPI_TOPOLOGY=/0:16,0 -np 16 beavis.exe
-h host0-hippi1 -e MPI_TOPOLOGY=/1:0,16 -np 16 beavis.exe
-h host1-hippi0 -e MPI_TOPOLOGY=/0:16,0 -np 16 beavis.exe
-h host1-hippi1 -e MPI_TOPOLOGY=/1:0,16 -np 16 beavis.exe

Now, when the appfile is run, 32 processes are run on host0 and 32
processes are run on host1 as shown in Figure 6.

Chapter 5 99

Tuning
General tuning

 Figure 6 Multiple network interfaces

Host0 processes with rank 0 - 15 communicate with processes with
rank 16 - 31 through shared memory (shmem). Host0 processes also
communicate through the host0-hippi0 network interface with host1
processes.

Processor subscription
Subscription refers to the match of processors and active processes on a
host or subcomplex. Table 11 lists possible subscription types.

Table 11 Subscription types

host0 host1

shmem shmem

Ranks 0 - 15

Ranks 16 - 31 Ranks 48 - 63

Ranks 32 - 47hippi0

hippi1

hippi0

hippi1

Subscription type Description

Under subscribed More processors than active processes

Fully subscribed Equal number of processors and active
processes

Over subscribed More active processes than processors

100 Chapter 5

Tuning
General tuning

When a host or subcomplex is over subscribed, application performance
decreases because of increased context switching.

Context switching can degrade application performance by slowing the
computation phase, increasing message latency, and lowering message
bandwidth. Simulations that use timing-sensitive algorithms can
produce unexpected or erroneous results when run on an over-subscribed
system.

MPI routine selection
To achieve the lowest message latencies and highest message
bandwidths for point-to-point synchronous communications, use the MPI
blocking routines MPI_Send and MPI_Recv . For asynchronous
communications, use the MPI nonblocking routines MPI_Isend and
MPI_Irecv .

When using blocking routines, try to avoid pending requests. MPI must
advance nonblocking messages, so calls to blocking receives must
advance pending requests, occasionally resulting in lower application
performance.

For tasks that require collective operations, use the appropriate MPI
collective routine. HP MPI takes advantage of shared memory to perform
efficient data movement and maximize your application’s communication
performance.

101 Chapter 5

Tuning
SPP-UX platform tuning

SPP-UX platform tuning
Three factors affect application performance when working with HP MPI
applications on the SPP-UX platform. These factors include:

• Multilevel parallelism

• Process placement

• Topology optimization

Multilevel parallelism
There are several ways to improve the performance of applications that
use multilevel parallelism:

• Use the MPI library to provide coarse-grained parallelism and a
parallelizing compiler to provide fine-grained (that is, thread-based)
parallelism. An appropriate mix of coarse- and fine-grained
parallelism provides better overall performance.

Use the HP MPI thread-compliant library if your application has two
or more threads that make MPI calls. See “Thread-compliant library”
on page 29 for more information.

• Assign only one multithreaded process per hypernode when placing
application processes. This ensures that enough processors are
available as different process threads become active.

Process placement
Because messaging bandwidth and latency are better within a
hypernode than between hypernodes, you can improve performance by
placing HP MPI processes that communicate heavily on the same
hypernode. You can do this using the MPI_TOPOLOGY environment
variable to tell an application the number of processes to run on each
available hypernode.

102 Chapter 5

Tuning
SPP-UX platform tuning

For example, suppose you want to run an application on an X-Class
server using a subcomplex called System. This subcomplex spans four
hypernodes and contains the 20 processors listed below:

• Hypernode 0: 5 CPUs

• Hypernode 1: 2 CPUs

• Hypernode 2: 5 CPUs

• Hypernode 3: 8 CPUs

Suppose the application you want to run contains the 16 processes listed
below:

• Set 1: Ranks 0-3

• Set 2: Ranks 4-7

• Set 3: Ranks 8-11

• Set 4: Ranks 12-15

Ideally, you should use a process placement that allows each set of
processes to run on a single hypernode to maximize message-passing
performance.

By default, HP MPI places processes by fully subscribing each hypernode
before moving on to the next. If the processes in your application are
placed using this approach, you get the placement shown in Figure 7.

Chapter 5 103

Tuning
SPP-UX platform tuning

 Figure 7 Default process placement

While this distribution prevents processor oversubscription, it does not
provide optimum message-passing performance because the processes
from sets two and three are split across hypernodes. Communications
within these process groups may become a bottleneck when running the
application.

You can solve this problem by specifying the number of processes you
want to run on each hypernode as shown below:

• Hypernode 0 --> Ranks 0-3

• Hypernode 1 --> unused

• Hypernode 2 --> Ranks 4-7

• Hypernode 3 --> Ranks 8-15

hypernode 0

CPU 4

CPU 6

CPU 3

CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

hypernode 3

CPU 4

CPU 6

CPU 3

CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

CPU 4

CPU 6

CPU 3
CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

CPU 4

CPU 6

CPU 3

CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

Ranks
0 - 4

 Ranks
5 - 6

 RanksRanks
 7 - 11 12 - 15

hypernode 2

hypernode 1

System
subcomplex

104 Chapter 5

Tuning
SPP-UX platform tuning

This distribution results in a placement shown in Figure 8.

 Figure 8 Optimal process placement

To specify this process placement, set MPI_TOPOLOGY by entering:

% setenv MPI_TOPOLOGY 4,0,4,8

For more information, see “MPI_TOPOLOGY” on page 47.

NOTE Make sure you use MPI_TOPOLOGY to place processes doing I/O on the
hypernodes hosting the appropriate I/O controller. Placing these processes
on noncontroller nodes results in lower I/O performance.

CPU 4

CPU 6

CPU 3

CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

CPU 4

CPU 6

CPU 3

CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

CPU 4

CPU 6

CPU 3

CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

CPU 4

CPU 6

CPU 3

CPU 2
CPU 1
CPU 0

CPU 7

CPU 5

Ranks
 0 - 3

 Ranks Ranks
4 - 7 8 - 15

hypernode 0 hypernode 1

hypernode 2 hypernode 3

System
subcomplex

Chapter 5 105

Tuning
SPP-UX platform tuning

Topology optimization
The MPI_Cart_create and MPI_Graph_create routines are used to
create Cartesian topologies. Both routines take a boolean input
argument called reorder, which specifies whether processes are
reordered to improve the mapping of the virtual topology onto the
physical machine.

Reordering in this manner reduces the overall communication cost for a
given topology. Specifically, latency is reduced as processes that
communicate the most are co-located on the same host.

If reorder is set to true, you can generate a report of the optimizations
performed by specifying the -o option in the MPI_FLAGS environment
variable. See “MPI_FLAGS” on page 43 for more information.

For example, suppose you write a 128-way application called cartesian.c,
and cartesian.c makes the call

MPI_Cart_create(MPI_COMM_WORLD, 2, [4 32], [true true],
true)

Next, you compile cartesian.c and decide to reorder the binary on an
X-Class server with 128 CPUs. You also want to generate a report of the
optimizations performed during the reordering process. You enter:

% setenv MPI_FLAGS -o MPI_TOPOLOGY System\
/0:16,16,16,16,16,16,16,16

to set the appropriate environment variables and then run the
application using:

% cartesian -np 128

106 Chapter 5

Tuning
SPP-UX platform tuning

Part of the optimization report generated during reordering is shown
below.

Default mapping of processes would result communication paths
 between hosts : 0
 between subcomplexes : 0
 between hypernodes : 136
 between CPUs within a hypernode/SMP : 120

Default mapping results communication paths
 between hosts : 0
 between subcomplexes : 0
 between hypernodes : 32
 between CPUs within a hypernode/SMP : 224

Chapter 6 107

6 Debugging and troubleshooting

This chapter describes debugging and troubleshooting HP MPI
applications. The topics covered are:

• Debugging HP MPI applications

• Troubleshooting HP MPI applications

• Frequently asked questions

108 Chapter 6

Debugging and troubleshooting
Debugging HP MPI applications

Debugging HP MPI applications
HP MPI provides single-process debuggers to debug applications
running on SPP-UX and HP-UX platforms. You access these debuggers
by setting options in the MPI_FLAGS environment variable.

To use a single-process debugger:

Step 1. Set the exdb , edde, egdb , or ecxdb options in the MPI_FLAGS
environment variable to use the XDB, DDE, GDB, or CXdb options
respectively (refer to “MPI_FLAGS” on page 43 for information about
these options).

On remote hosts, set DISPLAY to point to your console. In addition, use
xhost to allow remote hosts to redirect their windows to your console.

Step 2. Run your application. When MPI_Init is executed, HP MPI starts one
debugger session per process.

Step 3. Set a breakpoint anywhere following MPI_Init in each session.

Step 4. Set the global variable MPI_DEBUG_CONT to 1 using each session’s
command-line interface or graphical user interface. For example:

(CXdb) fill MPI_DEBUG_CONT \; 1

(dde) set -language c MPI_DEBUG_CONT = 1

(xdb) print *MPI_DEBUG_CONT = 1

(gdb) set MPI_DEBUG_CONT = 1

Step 5. Issue the appropriate debugger command in each session to continue
program execution. Each process runs and stops at the breakpoint after
MPI_Init that you set earlier.

Step 6. Debug the execution of each process using the appropriate commands for
your debugger.

Chapter 6 109

Debugging and troubleshooting
Debugging HP MPI applications

Using the Diagnostics Library
HP MPI provides a diagnostics library (DLIB) for advanced run-time
error checking and analysis. DLIB provides the following checks:

• Message signature analysis—Detects type mismatches in MPI calls.
For example, in the two calls below, the send operation sends an
integer, but the matching receive operation receives a
floating-point number.

if (rank == 1) then
 MPI_Send(&buf1, 1, MPI_INT, 2, 17, MPI_COMM_WORLD);
else if (rank == 2)
 MPI_Recv(&buf2, 1, MPI_FLOAT, 1, 17, MPI_COMM_WORLD, &status);

• MPI object-space corruption—Detects attempts to write into objects
such as MPI_Comm, MPI_Datatype, MPI_Request, MPI_Group, and
MPI_Errhandler.

• Multiple buffer writes—Detects whether the data type specified in a
receive or gather operation causes MPI to write to a user buffer more
than once.

To disable these checks or enable formatted or unformatted printing of
message data to a file, you must set the MPI_DLIB_FLAGS environment
variable. See “MPI_DLIB_FLAGS” on page 45 for more information.

To use the diagnostics library, specify the -ldmpi option when compiling
your application.

NOTE Using DLIB reduces application performance. Also, you cannot use DLIB
with XMPI tracing and instrumentation.

110 Chapter 6

Debugging and troubleshooting
Troubleshooting HP MPI applications

Troubleshooting HP MPI applications
This section describes hints and limitations when you work with HP MPI
applications. Check this information first when you troubleshoot
problems. The topics covered are organized by development task and
include problems in areas such as:

• Building

• Starting

• Running

• Completing

Building
You can solve most build-time problems by referring to the
documentation for the compiler you are using.

If you decide to use your own build script, be sure to specify all necessary
input libraries. To determine what libraries are needed, check the
contents of the compilation utilities stored in the HP MPI /opt/mpi/bin
subdirectory.

Avoid using the +autodbl option when compiling Fortran 77
applications. This option may lead to unpredictable results.

Starting
When starting multihost applications, make sure that:

• All remote hosts are listed in your .rhosts file on each machine

• Application binaries are available on the necessary remote hosts and
are executable on those machines

• The -sp option is passed to mpirun using an appfile if necessary

• The .cshrc file does not contain tty commands such as stty if you
are using a /bin/csh-based shell.

111 Chapter 6

Debugging and troubleshooting
Troubleshooting HP MPI applications

Running
Run-time problems originate from many sources. These sources include:

• Propagation of environment variables

• Shared memory

• Interoperability

• Message buffering

• External input and output

• Fortran 90 programming features

• UNIX open file descriptors

Propagation of environment variables
When working with applications that run on multiple hosts, you must set
values for environment variables on each host that participates in the
job.

A recommended way to accomplish this is to set the -e option in the
appfile:

-h remote_host -e MPI_TOPOLOGY= val [-np #] program [args]

Alternatively, you can set environment variables using the .cshrc file on
each remote host if you are using a /bin/csh-based shell.

Shared memory
When an MPI application starts, each MPI process attempts to allocate a
section of shared memory. This allocation can fail if the system-imposed
limit on the maximum number of allowed shared-memory identifiers is
exceeded or if the amount of available physical memory is not sufficient
to fill the request.

After shared-memory allocation is done, every MPI process attempts to
attach to the shared-memory region of every other process residing on
the same host. This attachment can fail if the number of shared-memory
segments attached to the calling process exceeds the system-imposed
limit. In this case, use the MPI_GLOBMEMSIZE environment variable to
reset your shared-memory allocation.

112 Chapter 6

Debugging and troubleshooting
Troubleshooting HP MPI applications

Furthermore, all processes must be able to attach to a shared-memory
region at the same virtual address. For example, if the first process to
attach to the segment attaches at address ADR, then the virtual-memory
region starting at ADR must be available to all other processes. Placing
MPI_Init to execute first can help avoid this problem. A process with a
large stack size is also prone to this failure. Choose process stack size
carefully.

Interoperability
Depending upon what server resources are available, applications may
run on heterogeneous systems such that certain portions run on SPP-UX
platforms and other portions run on HP-UX platforms.

For example, suppose you create an MPMD application that calculates
the average acceleration of particles in a simulated cyclotron. The
application consists of a four-process program called sum_accelerations
and an eight-process program called calculate_average.

Because you have access to a K-Class server called hpux_server and an
X-Class server called sppux_server, you create the following appfile:

-h hpux_server -np 4 sum_accelerations
-h sppux_server -np 8 calculate_average

Then, you invoke mpirun passing it the name of the appfile you created.
In this case, even though the two application programs run on different
platforms, all processes can communicate with each other, resulting in
twelve-way parallelism. The four processes belonging to the
sum_accelerations application are ranked 0 through 3, and the eight
processes belonging to the calculate_average application are ranked 4
through 11.

Message buffering
According to the MPI standard, message buffering may or may not occur
when processes communicate with each other using MPI_Send .
Therefore, you should take care when coding communications that
depend upon buffering to work correctly.

For example, when two processes use MPI_Send to simultaneously send
a message to each other and use MPI_Recv to receive the messages, the
results are unpredictable. If the messages are buffered, communication
works correctly. If the messages are not buffered, however, each process
hangs in MPI_Send waiting for MPI_Recv to take the message.

113 Chapter 6

Debugging and troubleshooting
Troubleshooting HP MPI applications

External input and output
Each process in HP MPI applications can read and write data to an
external drive. In some applications, however, having one process handle
all input and output (and communicate with other processes using
collective operations) is more efficient.

You can use stdin and stdout in your applications to read and write data.
Stdout is supported regardless of whether your application runs locally
or remotely. Stdin, however, may or may not be supported depending
upon how you run your application, whether the application is run
locally or remotely, and whether the -W option is used when invoking
mpirun . The run invocations under which stdin is supported are shown
in Table 12 for the hello_world application. All multihost invocations use
an appfile called hello_world.

Table 12 Run invocations that support stdin

Run invocation Is stdin supported?

hello_world -np # Yes

mpirun -np # hello_world Yes

mpirun -W -np # hello_world No

mpirun -W -np # -f hello_world
(multihost local and remote)

No

mpirun -np # -f hello_world
(multihost local)

Yes

mpirun -np # -f hello_world
(multihost remote)

No

114 Chapter 6

Debugging and troubleshooting
Troubleshooting HP MPI applications

Fortran 90 programming features
The MPI 1.1 standard defines bindings for Fortran 77 but not Fortran 90.

Although most Fortran 90 MPI applications work using the Fortran 77
MPI bindings, some Fortran 90 features can cause unexpected behavior
when used with HP MPI.

In Fortran 90, an array is not always stored in contiguous memory. When
noncontiguous array data are passed to an HP MPI subroutine,
Fortran 90 copies the data into temporary storage, passes it to the HP
MPI subroutine, and copies it back when the subroutine returns. As a
result, HP MPI is given the address of the copy but not of the original
data.

In some cases, this copy-in and copy-out operation can cause a problem.
For a nonblocking HP MPI call, the subroutine returns immediately and
the temporary storage is deallocated. When HP MPI tries to access the
already invalid memory, the behavior is unknown. Moreover, HP MPI
operates close to the system level and needs to know the address of the
original data. However, even if the address is known, HP MPI does not
know if the data are contiguous or not.

UNIX open file descriptors
UNIX imposes a limit to the number of file descriptors that application
processes can have open at one time. When running a multihost
application, each local process opens a socket to each remote process. An
HP MPI application with a large amount of off-host processes can quickly
reach the file descriptor limit. Ask your system administrator to increase
the limit if your applications frequently exceed the maximum.

Chapter 6 115

Debugging and troubleshooting
Troubleshooting HP MPI applications

Completing
In HP MPI, MPI_Finalize is a barrier-like collective routine that waits
until all application processes have called it before returning. If your
application exits without calling MPI_Finalize , pending requests may
not complete.

When running an application, mpirun waits until all processes have
exited. If an application detects an MPI error that leads to program
termination, it calls MPI_Abort instead.

You may want to code your error conditions using MPI_Abort , which
cleans up the application.

Each HP MPI application is identified by a job ID, unique on the server
where mpirun is invoked. If you use the -j option, mpirun prints the job
ID of the application that it runs. Then, you can invoke mpijob with the
job ID to display the status of your application.

If your application hangs or terminates abnormally, you can use
mpiclean to kill any lingering processes and shared-memory segments.
In this context, you use the job ID from mpirun to specify the application
to terminate.

116 Chapter 6

Debugging and troubleshooting
Frequently asked questions

Frequently asked questions
This section describes frequently asked HP MPI questions.

1. How do I find out what hypernode each MPI process is running on in
applications running under SPP-UX?

ANSWER: Use the node_num(3) interface in the AIL library, the pot
utility, or the syspic utility. The AIL library is searched
automatically when you use the HP MPI compilation scripts mpicc ,
mpif77 , mpiCC, and mpif90 .

2. My application times out before invoking MPI_Init . I get the
message:

mpirun: cannot accept connection: Connection timed out

I am running on a single system, not a cluster. What might be causing
this?

ANSWER: mpirun makes some assumptions about how long it will
take before a process calls MPI_Init . If the process does not call
MPI_Init in time, mpirun assumes there is an error.

In general, MPI programs should call MPI_Init before doing
anything else. This helps ensure that all processes respond to mpirun
in time, and that they will be able to attach shared memory at the
same addresses.

3. When I build with HP MPI and then turn tracing on, the application
takes a long time inside MPI_Finalize . This was not happening
previously. What is causing this?

ANSWER:MPI_Finalize now consolidates the raw trace generated
by each process into a single output file (with a .tr extension).
Previously, you had to invoke mpitrget explicitly to consolidate raw
traces. You can instruct HP MPI to not merge traces by specifying the
nf option using the MPI_XMPI environment variable. For example:

% setenv MPI_XMPI prefix:nf

4. How does HP MPI clean up when something goes wrong?

ANSWER: HP MPI uses several mechanisms to clean up job files.
Note that all processes in your application must call MPI_Finalize .

Chapter 6 117

Debugging and troubleshooting
Frequently asked questions

• When a correct HP MPI program (that is, one that calls
MPI_Finalize) exits successfully, the root host deletes the job file.

• If mpirun was used, it deletes the job file when the application
terminates, whether successfully or not.

• When an application calls MPI_Abort , the job file is deleted.

• If you use mpijob -j to get more information on a job, and the
processes of that job have all exited, mpijob issues a warning that
the job has completed, and deletes the job file.

5. The documentation for HP MPI says that the syntax for the
MPI_TOPOLOGY environment variable is [[sc][hypernode]:][topology].
Based on this, I would expect both of the following two commands to
handle a program run on two nodes:

% setenv MPI_TOPOLOGY System/0:1,1

or

% setenv MPI_TOPOLOGY System/0:0,2

The first command works fine and gives me:

happy04 [89] mpirun -w -np 2 hello_world
Hello world! I'm 1 of 2 on happy04
Hello world! I'm 0 of 2 on happy04

But the second command does not work and gives me the following
error:

mpirun -w -np 2 hello_world
hello_world: Pid 3261: MPI_Init: MPI_TOPOLOGY: Logical startup
node 0 must have an assigned process in the topology process
list [see MPI.1, TROUBLESHOOTING]
hello_world: Pid 3261: MPI_Init: MPI_TOPOLOGY=System/0:0,2
hello_world: Pid 3261: MPI_Init: Aborting the application

ANSWER: The problem is that the operating system can place
processes on any node. In particular, it is biased against placing
processes on node 0 because node 0 normally has a higher load than
other nodes. So, the operating system spawns the root process of
hello_world on node 1.

However, in the second command, MPI_TOPOLOGY forces both
processes to start on virtual node 0, resulting in startup failure. You
can avoid this problem if you place the root process on node 0 by
entering:

118 Chapter 6

Debugging and troubleshooting
Frequently asked questions

% mpa -node 0 hello_world -np 2

or

% mpa -node 0 mpirun -np 2 hello_world

You can also set MPI_TOPOLOGY to System/1:0,2 to use the default
subcomplex. In this case, there is no need to use mpa, just mpirun .
mpirun will migrate the application to node 1 as follows:

% mpirun -np 2 -e MPI_TOPOLOGY=System/1:0,2\
hello_world

Because this command does not depend on mpa, it is portable between
HP-UX and SPP-UX (MPI_TOPOLOGY is ignored on HP-UX, so setting
it there has no effect).

6. My MPI application hangs at MPI_Send . Why?

ANSWER: Check to see if your code assumes buffering behavior for
standard communication mode. Deadlock situations may occur when
standard send operations are used.

7. My MPI processes need to run with mpa. How do I do that?

ANSWER: The answer depends on whether you use mpirun or the
executable -np # syntax to run your application. If you use the
executable -np # syntax, you can invoke your application with mpa
as follows:

% mpa -DATA n -STACK m executable -np #

If you use mpirun , you can create a shell script with your mpa
execution line and include that script in your mpi file. For example:

% mpirun -np 32 mpa -DATA n -STACK m executable

Appendix A 119

A Example applications

This appendix provides example applications that supplement the
information in “MPI concepts” on page 4. The examples included are
shown in Table 13.

Table 13 Example applications shipped with HP MPI

Name Language Description -np argument

send_receive.f Fortran 77 Illustrates a simple send and
receive operation.

-np >= 2

ping_pong.c C Measures the time it takes to send
and receive data between two
processes.

-np = 2

compute_pi.f Fortran 77 Computes pi by integrating
f(x)=4/(1+x2).

-np >= 1

master_worker.f90 Fortran 90 Distributes sections of an array
and performs computation on all
sections in parallel.

-np >= 2

cart.C C++ Generates a virtual topology. -np = 4

communicator.c C Copies the default communicator
MPI_COMM_WORLD.

-np = 2

multi_par.f Fortran 77 Uses the alternating direction
iterative (ADI) method on a
2-dimensional compute region.

-np >= 1

io.c C Writes data for each process to a
separate file called iodatax, where
x represents each process rank in
turn. Then, the data in iodatax is
read back.

-np >= 1

thread_safe.c C Tracks the number of client
requests handled and prints a log
of the requests to stdout.

-np >= 2

120 Appendix A

Example applications

These examples and their Makefile are located in the /opt/mpi/help
subdirectory. The examples are presented for illustration purposes only.
They may not necessarily represent the most efficient way to solve a
given problem.

To build and run the examples:

Step 1. Change to a writable directory.

Step 2. Enter

% cp /opt/mpi/help/* .

Step 3. Enter make to build and run all the examples or make example_name to
build and run a specific application example.

Step 4. Enter

% mpirun -j -w -np # program

where program specifies the path to the executable created in step 3.

Appendix A 121

Example applications
send_receive.f

send_receive.f
In this Fortran 77 example, process 0 sends an array to other processes
in the default communicator MPI_COMM_WORLD.

 program main

 include 'mpif.h'

 integer rank, size, to, from, tag, count, i, ierr
 integer src, dest
 integer st_source, st_tag, st_count
 integer status(MPI_STATUS_SIZE)

 double precision data(100)

 call MPI_Init(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
 call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

 if (size .eq. 1) then
 print *, 'must have at least 2 processes'
 call MPI_Finalize(ierr)
 stop
 endif

 print *, 'Process ', rank, ' of ', size, ' is alive'
 dest = size - 1
 src = 0
 if (rank .eq. src) then
 to = dest
 count = 10
 tag = 2001

 do i=1, 10
 data(i) = 1
 enddo

 call MPI_Send(data, count, MPI_DOUBLE_PRECISION,
 + to, tag, MPI_COMM_WORLD, ierr)
 endif

 if (rank .eq. dest) then
 tag = MPI_ANY_TAG
 count = 10
 from = MPI_ANY_SOURCE
 call MPI_Recv(data, count, MPI_DOUBLE_PRECISION,
 + from, tag, MPI_COMM_WORLD, status,
ierr)
 call MPI_Get_Count(status, MPI_DOUBLE_PRECISION,
 + st_count, ierr)
 st_source = status(MPI_SOURCE)
 st_tag = status(MPI_TAG)

122 Appendix A

Example applications
send_receive.f

 print *, 'Status info: source = ', st_source,
 + ' tag = ', st_tag, ' count = ', st_count
 print *, rank, ' received', (data(i),i=1,10)
 endif

 call MPI_Finalize(ierr)

 stop
 end

send_receive output
The output from running the send_receive executable is shown below.
The application was run with -np = 10.

Process 0 of 10 is alive
Process 1 of 10 is alive
Process 3 of 10 is alive
Process 5 of 10 is alive
Process 9 of 10 is alive
Process 2 of 10 is alive
Status info: source = 0 tag = 2001 count = 10
9 received 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Process 4 of 10 is alive
Process 7 of 10 is alive
Process 8 of 10 is alive
Process 6 of 10 is alive

Appendix A 123

Example applications
ping_pong.c

ping_pong.c
This C example is used as a performance benchmark to measure the
amount of time it takes to send and receive data between two processes.
The buffers are aligned and offset from each other to avoid cache conflicts
caused by direct process-to-process byte-copy operations

To run this example:

• Define the CHECK macro to check data integrity.

• Increase the number of bytes to at least twice the cache size to obtain
representative bandwidth measurements.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <mpi.h>

#define NLOOPS 1000
#define ALIGN 4096

main(argc, argv)

 int argc;
 char *argv[];

{
 int i, j;
 double start, stop;
 int nbytes = 0;
 int rank, size;
 MPI_Status status;
 char *buf;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 if (size != 2) {
 if (! rank) printf("ping_pong: must have two
processes\n");
 MPI_Finalize();
 exit(0);
 }

 nbytes = (argc > 1) ? atoi(argv[1]) : 0;
 if (nbytes < 0) nbytes = 0;

124 Appendix A

Example applications
ping_pong.c

/*
 * Page-align buffers and displace them in the cache to avoid
collisions.
 */
 buf = (char *) malloc(nbytes + 524288 + (ALIGN - 1));
 if (buf == 0) {
 MPI_Abort(MPI_COMM_WORLD, MPI_ERR_BUFFER);
 exit(1);
 }

 buf = (char *) ((((unsigned long) buf) + (ALIGN - 1)) &
~(ALIGN - 1));
 if (rank == 1) buf += 524288;
 memset(buf, 0, nbytes);
/*
 * Ping-pong.
 */
 if (rank == 0) {
 printf("ping-pong %d bytes ...\n", nbytes);

/*
 * warm-up loop
 */
 for (i = 0; i < 5; i++) {
 MPI_Send(buf, nbytes, MPI_CHAR, 1, 1, MPI_COMM_WORLD);
 MPI_Recv(buf, nbytes, MPI_CHAR,1, 1, MPI_COMM_WORLD, &status);
 }
/*
 * timing loop
 */
 start = MPI_Wtime();
 for (i = 0; i < NLOOPS; i++) {
#ifdef CHECK
 for (j = 0; j < nbytes; j++) buf[j] =
(char) (j + i);
#endif
 MPI_Send(buf, nbytes, MPI_CHAR, 1, 1000 + i, MPI_COMM_WORLD);
#ifdef CHECK
 memset(buf, 0, nbytes);
#endif
 MPI_Recv(buf, nbytes, MPI_CHAR, 1, 2000 + i, MPI_COMM_WORLD,
&status);

#ifdef CHECK
 for (j = 0; j < nbytes; j++) {
 if (buf[j] != (char) (j + i)) {
 printf("error: buf[%d] = %d, not %d\n", j, buf[j], j + i);
 break;
 }
 }
#endif
 }
 stop = MPI_Wtime();

 printf("%d bytes: %.2f usec/msg\n",
 nbytes, (stop - start) / NLOOPS / 2 * 1000000);

Appendix A 125

Example applications
ping_pong.c

 if (nbytes > 0) {
 printf("%d bytes: %.2f MB/sec\n", nbytes,
 nbytes / 1000000. /
 ((stop - start) / NLOOPS / 2));
 }
 }
 else {
/*
 * warm-up loop
 */
for (i = 0; i < 5; i++) {
 MPI_Recv(buf, nbytes, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &status);
 MPI_Send(buf, nbytes, MPI_CHAR, 0, 1, MPI_COMM_WORLD);
 }

for (i = 0; i < NLOOPS; i++) {
 MPI_Recv(buf, nbytes, MPI_CHAR, 0, 1000 + i, MPI_COMM_WORLD,
&status);
 MPI_Send(buf, nbytes, MPI_CHAR, 0, 2000 + i, MPI_COMM_WORLD);
 }
 }

 MPI_Finalize();
 exit(0);
}

ping_pong output
The output from running the ping_pong executable is shown below. The
application was run with -np = 2.

ping-pong 0 bytes ...
0 bytes: 2.98 3.99 34.99 usec/msg

126 Appendix A

Example applications
compute_pi.f

compute_pi.f
This Fortran 77 example computes pi by integrating f(x) = 4/(1 + x2).
Each process:

• Receives the number of intervals used in the approximation

• Calculates the areas of its rectangles

• Synchronizes for a global summation

Process 0 prints the result and the time it took to complete the
calculation.

 program main

 include 'mpif.h'

 double precision PI25DT
 parameter(PI25DT = 3.141592653589793238462643d0)

 double precision mypi, pi, h, sum, x, f, a
 integer n, myid, numprocs, i, ierr
C
C Function to integrate
C
 f(a) = 4.d0 / (1.d0 + a*a)

 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
 print *, "Process ", myid, " of ", numprocs, " is alive"

 sizetype = 1
 sumtype = 2

 if (myid .eq. 0) then
 n = 100
 endif

 call MPI_BCAST(n, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

C
C Calculate the interval size.
C
 h = 1.0d0 / n
 sum = 0.0d0

 do 20 i = myid + 1, n, numprocs
 x = h * (dble(i) - 0.5d0)

Appendix A 127

Example applications
compute_pi.f

 sum = sum + f(x)
 20 continue

 mypi = h * sum
C
C Collect all the partial sums.
C
 call MPI_REDUCE(mypi, pi, 1, MPI_DOUBLE_PRECISION,
 + MPI_SUM, 0, MPI_COMM_WORLD, ierr)
C
C Process 0 prints the result.
C
 if (myid .eq. 0) then
 write(6, 97) pi, abs(pi - PI25DT)
 97 format(' pi is approximately: ', F18.16,
 + ' Error is: ', F18.16)
 endif

 call MPI_FINALIZE(ierr)

 stop
 end

compute_pi output
The output from running the compute_pi executable is shown below. The
application was run with -np = 10.

Process 0 of 10 is alive
Process 1 of 10 is alive
Process 3 of 10 is alive
Process 9 of 10 is alive
Process 7 of 10 is alive
Process 5 of 10 is alive
Process 6 of 10 is alive
Process 2 of 10 is alive
Process 4 of 10 is alive
Process 8 of 10 is alive
pi is approximately: 3.1416009869231250
Error is: .0000083333333318

128 Appendix A

Example applications
master_worker.f90

master_worker.f90
In this Fortran 90 example, a master task initiates (numtasks - 1)
number of worker tasks. The master distributes an equal portion of an
array to each worker task. Each worker task receives its portion of the
array and sets the value of each element to (the element’s index + 1).
Each worker task then sends its portion of the modified array back to the
master.

 program array_manipulation
 include 'mpif.h'

 integer (kind=4) :: status(MPI_STATUS_SIZE)
 integer (kind=4), parameter :: ARRAYSIZE = 10000, MASTER = 0
 integer (kind=4) :: numtasks, numworkers, taskid, dest, index,
i
 integer (kind=4) :: arraymsg, indexmsg, source, chunksize,
int4, real4
 real (kind=4) :: data(ARRAYSIZE), result(ARRAYSIZE)
 integer (kind=4) :: numfail

 call MPI_Init(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, taskid, ierr)
 call MPI_Comm_size(MPI_COMM_WORLD, numtasks, ierr)
 numworkers = numtasks - 1
 chunksize = (ARRAYSIZE / numworkers)
 arraymsg = 1
 indexmsg = 2
 int4 = 4
 real4 = 4
 numfail = 0

! ***************************** Master task *********************
 if (taskid .eq. MASTER) then
 data = 0.0
 index = 1
 do dest = 1, numworkers
 call MPI_Send(index, 1, MPI_INTEGER, dest, 0,
MPI_COMM_WORLD, ierr)
 call MPI_Send(data(index), chunksize, MPI_REAL, dest, 0,
&
 MPI_COMM_WORLD, ierr)
 index = index + chunksize
 end do

Appendix A 129

Example applications
master_worker.f90

 do i = 1, numworkers
 source = i
 call MPI_Recv(index, 1, MPI_INTEGER, source, 1,
MPI_COMM_WORLD, &
 status, ierr)
 call MPI_Recv(result(index), chunksize, MPI_REAL,
source, 1, &
 MPI_COMM_WORLD, status, ierr)
 end do

 do i = 1, numworkers*chunksize
 if (result(i) .ne. (i+1)) then
 print *, 'element ', i, ' expecting ', (i+1), '
actual is ', result(i)
 numfail = numfail + 1
 endif
 enddo

 if (numfail .ne. 0) then
 print *, 'out of ', ARRAYSIZE, ' elements, ', numfail, '
wrong answers'
 else
 print *, 'correct results!'
 endif
 end if

! ************************** Worker task ************************
 if (taskid .gt. MASTER) then
 call MPI_Recv(index, 1, MPI_INTEGER, MASTER, 0,
MPI_COMM_WORLD, &
 status, ierr)
 call MPI_Recv(result(index), chunksize, MPI_REAL, MASTER,
0, &
 MPI_COMM_WORLD, status, ierr)

 do i = index, index + chunksize -1
 result(i) = i + 1
 end do

 call MPI_Send(index, 1, MPI_INTEGER, MASTER, 1,
MPI_COMM_WORLD, ierr)
 call MPI_Send(result(index), chunksize, MPI_REAL, MASTER,
1, &
 MPI_COMM_WORLD, ierr)
 end if
 call MPI_Finalize(ierr)

end program array_manipulation

master_worker output
The output from running the master_worker executable is shown below.
The application was run with -np = 2.

correct results!

130 Appendix A

Example applications
cart.C

cart.C
This C++ program generates a virtual topology. The class Node
represents a node in a 2-D torus. Each process is assigned a node or
nothing. Each node holds integer data, and the shift operation exchanges
the data with its neighbors. Thus, north-east-south-west shifting returns
the initial data.

#include <stdlib.h>
#include <mpi.h>

#define NDIMS 2

typedef enum { NORTH, SOUTH, EAST, WEST } Direction;

// A node in 2-D torus
class Node {
private:
 MPI_Comm comm;
 int dims[NDIMS], coords[NDIMS];
 int grank, lrank;
 int data;
public:
 Node(void);
 ~Node(void);
 void profile(void);
 void print(void);
 void shift(Direction);
};

// A constructor
Node::Node(void)
{
 int i, nnodes, periods[NDIMS];

// Create a balanced distribution
MPI_Comm_size(MPI_COMM_WORLD, &nnodes);
for (i = 0; i < NDIMS; i++) { dims[i] = 0; }
MPI_Dims_create(nnodes, NDIMS, dims);

// Establish a cartesian topology communicator
for (i = 0; i < NDIMS; i++) { periods[i] = 1; }
MPI_Cart_create(MPI_COMM_WORLD, NDIMS, dims, periods, 1, &comm);

// Initialize the data
MPI_Comm_rank(MPI_COMM_WORLD, &grank);
if (comm == MPI_COMM_NULL) {
 lrank = MPI_PROC_NULL;
 data = -1;
} else {
 MPI_Comm_rank(comm, &lrank);

Appendix A 131

Example applications
cart.C

 data = lrank;
 MPI_Cart_coords(comm, lrank, NDIMS, coords);
}
}

// A destructor
Node::~Node(void)
{
 if (comm != MPI_COMM_NULL) {
 MPI_Comm_free(&comm);
 }
}

// Shift function
void Node::shift(Direction dir)
{
if (comm == MPI_COMM_NULL) { return; }

int direction, disp, src, dest;
if (dir == NORTH) {
 direction = 0; disp = -1;
} else if (dir == SOUTH) {
 direction = 0; disp = 1;
} else if (dir == EAST) {
 direction = 1; disp = 1;
} else {
 direction = 1; disp = -1;
}

MPI_Cart_shift(comm, direction, disp, &src, &dest);
MPI_Status stat;
MPI_Sendrecv_replace(&data, 1, MPI_INT, dest, 0, src, 0, comm,
&stat);
}

// Synchronize and print the data being held
void Node::print(void)
{
 if (comm != MPI_COMM_NULL) {
 MPI_Barrier(comm);
 if (lrank == 0) { puts(""); } // line feed
 MPI_Barrier(comm);
 printf("(%d, %d) holds %d\n", coords[0], coords[1], data);
 }
}

// Print object's profile
void Node::profile(void)
{
 // Non-member does nothing
 if (comm == MPI_COMM_NULL) { return; }

 // Print "Dimensions" at first
 if (lrank == 0) {
 printf("Dimensions: (%d, %d)\n", dims[0], dims[1]);
 }
 MPI_Barrier(comm);

132 Appendix A

Example applications
cart.C

 // Each process prints its profile
 printf("global rank %d: cartesian rank %d, coordinate (%d,
%d)\n",
 grank, lrank, coords[0], coords[1]);
}

// Program body

//
// Define a torus topology and demonstrate shift operations.
//
void body(void)
{
 Node node;

 node.profile();

 node.print();

 node.shift(NORTH);
 node.print();
 node.shift(EAST);
 node.print();
 node.shift(SOUTH);
 node.print();
 node.shift(WEST);
 node.print();
}

//
// Main program---it is probably a good programming practice to
call
// MPI_Init() and MPI_Finalize() here.
//
int main(int argc, char **argv)
{
 MPI_Init(&argc, &argv);
 body();
 MPI_Finalize();
}

Appendix A 133

Example applications
cart.C

cart output
The output from running the cart executable is shown below. The
application was run with -np = 4.

Dimensions: (2, 2)
global rank 0: cartesian rank 0, coordinate (0, 0)
global rank 2: cartesian rank 2, coordinate (1, 0)
global rank 3: cartesian rank 3, coordinate (1, 1)
global rank 1: cartesian rank 1, coordinate (0, 1)

(0, 0) holds 0
(0, 1) holds 1
(1, 0) holds 2
(1, 1) holds 3

(0, 0) holds 2
(0, 1) holds 3
(1, 0) holds 0
(1, 1) holds 1

(0, 0) holds 3
(0, 1) holds 2
(1, 0) holds 1
(1, 1) holds 0

(0, 0) holds 1
(0, 1) holds 0
(1, 0) holds 3
(1, 1) holds 2

(0, 0) holds 0
(1, 1) holds 3
(1, 0) holds 2
(0, 1) holds 1

134 Appendix A

Example applications
communicator.c

communicator.c
This C example shows how to make a copy of the default communicator
MPI_COMM_WORLD.

#include <stdio.h>
#include <mpi.h>

main(argc, argv)

int argc;
char *argv[];

{
 int rank, size, data;
 MPI_Status status;
 MPI_Comm libcomm;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_dup(MPI_COMM_WORLD, &libcomm);

 if (rank == 0) {
 data = 12345;
 MPI_Send(&data, 1, MPI_INT, 1, 5,
MPI_COMM_WORLD);
 data = 6789;
 MPI_Send(&data, 1, MPI_INT, 1, 5, libcomm);
 } else {
 MPI_Recv(&data, 1, MPI_INT, 0, 5, libcomm,
&status);
 printf("received libcomm data = %d\n", data);
 MPI_Recv(&data, 1, MPI_INT, 0, 5,
MPI_COMM_WORLD, &status);
 printf("received data = %d\n", data);
 }

 MPI_Comm_free(&libcomm);
 MPI_Finalize();
 exit(0);
}

communicator output
The output from running the communicator executable is shown below.
The application was run with -np = 2.

received libcomm data = 6789
received data = 12345

Appendix A 135

Example applications
multi_par.f

multi_par.f
The ADI method is often used to solve differential equations. In this
example, multi_par.f, access to CPSlib is required, and you must set
MPI_TOPOLOGY so the system allocates one process per hypernode. A
script file, multi_par.sh, is included to help automate this task.

multi_par.f implements the following logic for a 2-dimensional compute
region:

 DO J=1,JMAX
 DO I=2,IMAX
 A(I,J)=A(I,J)+A(I-1,J)
 ENDDO
 ENDDO

 DO J=2,JMAX
 DO I=1,IMAX
 A(I,J)=A(I,J)+A(I,J-1)
 ENDDO
 ENDDO

There are loop-carried dependencies in the first inner DO loop (the
array’s rows) and the second outer DO loop (the array’s columns).

Partitioning the array into column sections supports parallelization of
the first outer loop. Partitioning the array into row sections supports
parallelization of the second outer loop. However, this approach requires
a massive data exchange among processes because of run-time partition
changes.

In this case, twisted-data layout partitioning is a better approach
because the partitioning used for the parallelization of the first outer
loop can accommodate the partitioning of the second outer loop. The
partitioning of the array is shown in Figure 9.

136 Appendix A

Example applications
multi_par.f

 Figure 9 Array partitioning

In this sample program, the rank n process is assigned to the partition n
at distribution initialization. Because these partitions are not
contiguous-memory regions, MPI's derived datatype is used to define the
partition layout to the MPI system.

Each process starts with computing summations in row-wise fashion. For
example, the rank 2 process starts with the block that is on the
0th-row block and 2nd-column block (denoted as [0,2]).

The block computed in the second step is [1,3]. Computing the first row
elements in this block requires the last row elements in the [0,3] block
(computed in the first step in the rank 3 process). Thus, the rank 2
process receives the data from the rank 3 process at the beginning of the
second step. Note that the rank 2 process also sends the last row
elements of the [0,2] block to the rank 1 process that computes [1,2] in
the second step. By repeating these steps, all processes finish
summations in row-wise fashion (the first outer-loop in the illustrated
program).

The second outer-loop (the summations in column-wise fashion) is done
in the same manner. For example, at the beginning of the second step for
the column-wise summations, the rank 2 process receives data from the
rank 1 process that computed the [3,0] block. The rank 2 process also
sends the last column of the [2,0] block to the rank 3 process. Note that
each process keeps the same blocks for both of the outer-loop
computations.

column block

row block

0 1 2 3

0

1

2

3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

Appendix A 137

Example applications
multi_par.f

This approach is good for distributed memory architectures on which
repartitioning requires massive data communications that are
expensive. However, on shared memory architectures, the partitioning of
the compute region does not imply data distribution. The row- and
column-block partitioning method requires just one synchronization at
the end of each outer loop.

For distributed shared-memory architectures on X-class servers, the mix
of the two methods can be effective. The sample program implements the
twisted-data layout method with MPI and the row- and column-block
partitioning method with CPSlib. Each MPI process spawns symmetric
threads and assigns a block of rows or columns in its computing block to
each of threads. Because the computation in the first outer loop does not
have dependencies between columns, a thread that is assigned to a block
of columns can execute without synchronization. In the second
outer-loop, each thread is assigned a block of rows.

Because there is no need for an MPI process to access other processes'
memory, it can use node-private memory. However, threads spawned by a
process need to share memory. Given this, the strategy here is to execute
MPI processes one per hypernode, assign the computation region on
node-private memory, and spawn threads on the node it is running.

 implicit none
 include 'mpif.h'
 integer nrow ! # of rows
 integer ncol ! # of columns
 parameter(nrow=1000,ncol=1000)
 double precision array(nrow,ncol) ! compute region

c Allocate the compute region in node-private memory
 $dir node_private(array)
 integer blk ! block iteration counter
 integer rb ! row block number
 integer cb ! column block number
 integer nrb ! next row block number
 integer ncb ! next column block number
 integer rbs(:) ! row block start subscripts
 integer rbe(:) ! row block end subscripts
 integer cbs(:) ! column block start subscripts
 integer cbe(:) ! column block end subscripts
 integer rdtype(:) ! row block communication datatypes
 integer cdtype(:) ! column block communication datatypes
 integer twdtype(:) ! twisted distribution datatypes
 integer ablen(:) ! array of block lengths
 integer adisp(:) ! array of displacements
 integer adtype(:) ! array of datatypes
 allocatable rbs,rbe,cbs,cbe,rdtype,cdtype,twdtype,ablen,adisp,
 * adtype
 integer rank ! rank iteration counter
 integer comm_size ! number of MPI processes

138 Appendix A

Example applications
multi_par.f

 integer comm_rank ! sequential ID of MPI process
 integer ierr ! MPI error code
 integer mstat(mpi_status_size) ! MPI function status
 integer src ! source rank
 integer dest ! destination rank
 integer dsize ! size of double precision in bytes
 double precision startt,endt,elapsed ! time keepers
 integer ncpus ! # of CPUs on the node
 integer acpus ! total # of CPUs
 integer params(4) ! parameters for thread creation
 integer rc ! cps funtion return code
 external compcolumn,comprow ! subroutines execute in threads

c CPS functions
 integer cps_node_cpus,cps_ppcalln

c$dir sync_routine(cps_node_cpus,cps_ppcalln)
c
c MPI initialization
c
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world,comm_size,ierr)
 call mpi_comm_rank(mpi_comm_world,comm_rank,ierr)
c
c CPS setup
c
 ncpus=cps_node_cpus()
 if (ncpus.le.0) then
 write(7,*) 'More than 1 CPUs must be available on the node ',
 * 'on which rank',comm_rank,' is running'
 call mpi_abort(mpi_comm_world,1,ierr)
 else
 write(6,*) ncpus,' threads in rank',comm_rank,' process'
 call mpi_reduce(ncpus,acpus,1,mpi_integer,mpi_sum,0,
 * mpi_comm_world,ierr)
 endif

c
c Allocate threads on the same node on which calling processes
c execute so all of them can access the compute region that is
c assigned in the node-private memory. The following parameter
c vector is passed to the symmetric thread-spawn function.
c
 params(1)=-1 ! alloc. threads on same node as calling thread
 params(2)=ncpus ! min. # of threads
 params(3)=ncpus ! max. # of threads
 params(4)=1 ! alloc. threads per node

c
c Data initialization and start up
c
 if (comm_rank.eq.0) then
 write(6,*) 'Initializing',nrow,' x',ncol,' array...'
 call getdata(nrow,ncol,array)
 write(6,*) 'Start computation with total of',acpus,' threads'
 startt=mpi_wtime()
 endif

Appendix A 139

Example applications
multi_par.f

c
c Compose MPI datatypes for row/column send-receive
c
c Because rows are assigned contiguously in memory, row-wise
c communication regions are defined as MPI's contiguous datatype
c while column-wise regions are defined as MPI's vector datatype.
c
 allocate(rbs(0:comm_size-1),rbe(0:comm_size-1),cbs(0:comm_size-1),
 * cbe(0:comm_size-1),rdtype(0:comm_size-1),
 * cdtype(0:comm_size-1),twdtype(0:comm_size-1))
 do blk=0,comm_size-1
 call blockasgn(1,nrow,comm_size,blk,rbs(blk),rbe(blk))
 call mpi_type_contiguous(rbe(blk)-rbs(blk)+1,
 * mpi_double_precision,rdtype(blk),ierr)
 call mpi_type_commit(rdtype(blk),ierr)
 call blockasgn(1,ncol,comm_size,blk,cbs(blk),cbe(blk))
 call mpi_type_vector(cbe(blk)-cbs(blk)+1,1,nrow,
 * mpi_double_precision,cdtype(blk),ierr)
 call mpi_type_commit(cdtype(blk),ierr)
 enddo

c
c Compose MPI datatypes for gather/scatter
c
c Each block of the partitioning is defined as a set of fixed-length
c vectors. Each process's partition is defined as a structure of such
c blocks.
c
 allocate(adtype(0:comm_size-1),adisp(0:comm_size-1),
 * ablen(0:comm_size-1))
 call mpi_type_extent(mpi_double_precision,dsize,ierr)
 do rank=0,comm_size-1
 do rb=0,comm_size-1
 cb=mod(rb+rank,comm_size)
 call mpi_type_vector(cbe(cb)-cbs(cb)+1,rbe(rb)-rbs(rb)+1,
 * nrow,mpi_double_precision,adtype(rb),ierr)
 call mpi_type_commit(adtype(rb),ierr)
 adisp(rb)=((rbs(rb)-1)+(cbs(cb)-1)*nrow)*dsize
 ablen(rb)=1
 enddo
 call mpi_type_struct(comm_size,ablen,adisp,adtype,
 * twdtype(rank),ierr)
 call mpi_type_commit(twdtype(rank),ierr)
 do rb=0,comm_size-1
 call mpi_type_free(adtype(rb),ierr)
 enddo

 enddo
 deallocate(adtype,adisp,ablen)

c
c Scatter initial data using derived datatypes defined above
c for the partitioning. MPI_send() and MPI_recv() determine the
c layout of the data from these datatypes. This saves application
c programs from having to manually pack/unpack the data. More importantly,
c it provides opportunities for optimal communication
c strategies.

140 Appendix A

Example applications
multi_par.f

c
 if (comm_rank.eq.0) then
 do dest=1,comm_size-1
 call mpi_send(array,1,twdtype(dest),dest,0,mpi_comm_world,
 * ierr)
 enddo
 else
 call mpi_recv(array,1,twdtype(comm_rank),0,0,mpi_comm_world,
 * mstat,ierr)
 endif

c
c Computation
c
c
c Sum up in each column.
c Each MPI process, or a rank, computes blocks that it is assigned.
c The column block number is assigned in the variable 'cb'. The
c starting and ending subscripts of the column block 'cb' are
c stored in 'cbs(cb)' and 'cbe(cb)' respectively. The row block
c number is assigned in the variable 'rb'. The starting and ending
c subscripts of the row block 'rb' are stored in 'rbs(rb)' and
c 'rbe(rb)' respectively.
c
 src=mod(comm_rank+1,comm_size)
 dest=mod(comm_rank-1+comm_size,comm_size)
 ncb=comm_rank
 do rb=0,comm_size-1
 cb=ncb

c
c Compute a block with threads.
c cps_ppcalln() spawns symmetric threads, executes a function in
c parallel, and automatically joins the threads. Note that all MPI
c processes execute this code
c
 rc=cps_ppcalln(params,compcolumn,8,ncpus,nrow,ncol,array,
 * rbs(rb),rbe(rb),cbs(cb),cbe(cb))
 if (rc.le.0) then
 write(7,*) 'rank',comm_rank,
 * ' cps_ppcalln(compcolumn) returned',rc
 call mpi_abort(mpi_comm_world,1,ierr)
 endif
 if (rb.lt.comm_size-1) then

c
c Send the last row of the block to the rank that computes the
c block next to the computed block. Receive the last row of the
c block that the next block being computed depends on.
c
 nrb=rb+1
 ncb=mod(nrb+comm_rank,comm_size)
 call mpi_sendrecv(array(rbe(rb),cbs(cb)),1,cdtype(cb),dest,
 * 0,array(rbs(nrb)-1,cbs(ncb)),1,cdtype(ncb),src,0,
 * mpi_comm_world,mstat,ierr)
 endif
 enddo

Appendix A 141

Example applications
multi_par.f

c
c Sum up in each row.
c The same logic as the loop above except rows and columns are
c switched.
c
 src=mod(comm_rank-1+comm_size,comm_size)
 dest=mod(comm_rank+1,comm_size)
 do cb=0,comm_size-1
 rb=mod(cb-comm_rank+comm_size,comm_size)
 rc=cps_ppcalln(params,comprow,8,ncpus,nrow,ncol,array,
 * rbs(rb),rbe(rb),cbs(cb),cbe(cb))
 if (rc.le.0) then
 write(7,*) 'rank',comm_rank,
 * ' cps_ppcalln(comprow) returned',rc
 call mpi_abort(mpi_comm_world,1,ierr)
 endif
 if (cb.lt.comm_size-1) then
 ncb=cb+1
 nrb=mod(ncb-comm_rank+comm_size,comm_size)
 call mpi_sendrecv(array(rbs(rb),cbe(cb)),1,rdtype(rb),dest,
 * 0,array(rbs(nrb),cbs(ncb)-1),1,rdtype(nrb),src,0,
 * mpi_comm_world,mstat,ierr)
 endif
 enddo

c
c Gather computation results
c
 if (comm_rank.eq.0) then
 do src=1,comm_size-1
 call mpi_recv(array,1,twdtype(src),src,0,mpi_comm_world,
 * mstat,ierr)
 enddo
 endt=mpi_wtime()
 elapsed=endt-startt
 write(6,*) 'Computation took',elapsed,' seconds'
 else
 call mpi_send(array,1,twdtype(comm_rank),0,0,mpi_comm_world,
 * ierr)
 endif

c
c Dump to a file
c
c if (comm_rank.eq.0) then
c print*,'Dumping to adi.out...'
c open(8,file='adi.out',form='unformatted')
c write(8,*) array
c close(8,status='keep')
c endif

c
c Free the resources
c
 do rank=0,comm_size-1
 call mpi_type_free(twdtype(rank),ierr)
 enddo

142 Appendix A

Example applications
multi_par.f

 do blk=0,comm_size-1
 call mpi_type_free(rdtype(blk),ierr)
 call mpi_type_free(cdtype(blk),ierr)
 enddo
 deallocate(rbs,rbe,cbs,cbe,rdtype,cdtype,twdtype)

c
c Finalize the MPI system
c
 call mpi_finalize(ierr)
 end

c** subroutine
blockasgn(subs,sube,blockcnt,nth,blocks,blocke)

c
c This subroutine
c is given a range of subscripts and the total number of blocks in
c which the range is to be divided and assigns a subrange to the caller
c that is n-th member of the blocks.
c
 implicit none
 integer subs ! (in) subscript start
 integer sube ! (in) subscript end
 integer blockcnt ! (in) block count
 integer nth ! (in) my block (begin from 0)
 integer blocks ! (out) assigned block start subscript
 integer blocke ! (out) assigned block end subscript

c
 integer d1,m1
c
 d1=(sube-subs+1)/blockcnt
 m1=mod(sube-subs+1,blockcnt)
 blocks=nth*d1+subs+min(nth,m1)
 blocke=blocks+d1-1
 if(m1.gt.nth)blocke=blocke+1
 end

c** subroutine
compcolumn(ncpus,nrow,ncol,array,rbs,rbe,cbs,cbe)

c
c This subroutine
c does summations of columns in a thread.
c
 implicit none
 integer ncpus ! # of cpus on node
 integer nrow ! length of row
 integer ncol ! length of column
 double precision array(nrow,ncol) ! region
 integer rbs ! row block start subscript
 integer rbe ! row block end subscript
 integer cbs ! column block start subscript
 integer cbe ! column block end subscript

c
 integer stid,cps_stid ! ID of the symmetric thread

Appendix A 143

Example applications
multi_par.f

c$dir sync_routine(cps_stid)
c
c Local variables
c
 integer mycbs,mycbe ! my column start/end index
 integer i,j

c
c Assign a range of columns to this thread and compute
c
 stid=cps_stid()
 call blockasgn(cbs,cbe,ncpus,stid,mycbs,mycbe)
 do j=mycbs,mycbe
 do i=max(2,rbs),rbe
 array(i,j)=array(i-1,j)+array(i,j)
 enddo
 enddo
 end

c** subroutine
comprow(ncpus,nrow,ncol,array,rbs,rbe,cbs,cbe)

c
c This subroutine
c does summations of rows in a thread.
c
 implicit none
 integer ncpus ! # of cpus on node
 integer nrow ! length of row
 integer ncol ! length of column
 double precision array(nrow,ncol) ! region
 integer rbs ! row block start subscript
 integer rbe ! row block end subscript
 integer cbs ! column block start subscript
 integer cbe ! column block end subscript

c
 integer stid,cps_stid ! ID of the symmetric thread

c$dir sync_routine(cps_stid)
c
c Local variables
c
 integer myrbs,myrbe ! my row start/end index
 integer i,j

c
c Assign a range of rows to this thread and compute
c
 stid=cps_stid()
 call blockasgn(rbs,rbe,ncpus,stid,myrbs,myrbe)
 do j=max(2,cbs),cbe
 do i=myrbs,myrbe
 array(i,j)=array(i,j-1)+array(i,j)
 enddo
 enddo
 end

144 Appendix A

Example applications
multi_par.f

c** subroutine
getdata(nrow,ncol,array)

c
c Enter dummy data
c
 integer nrow,ncol
 double precision array(nrow,ncol)
c
 do j=1,ncol
 do i=1,nrow
 array(i,j)=(j-1.0)*ncol+i
 enddo
 enddo
 end

Appendix A 145

Example applications
io.c

io.c
In this C example, each process writes to a separate file called iodatax,
where x represents each process rank in turn. Then, the data in iodatax
is read back.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <mpi.h>

#define SIZE (65536)
#define FILENAME "iodata"

main(argc, argv)

 int argc;
 char **argv;

{
 int *buf, i, rank, nints, len, flag;
 char *filename;
 MPI_File fh;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 buf = (int *) malloc(SIZE);
 nints = SIZE/sizeof(int);
 for (i=0; i<nints; i++) buf[i] = rank*100000 + i;

 /* each process opens a separate file called FILENAME.'myrank' */

 filename = (char *) malloc(strlen(FILENAME) + 10);
 sprintf(filename, "%s.%d", FILENAME, rank);

 MPI_File_open(MPI_COMM_SELF, filename,
 MPI_MODE_CREATE | MPI_MODE_RDWR,
 MPI_INFO_NULL, &fh);

 MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, MPI_INT, "native",
 MPI_INFO_NULL);
 MPI_File_write(fh, buf, nints, MPI_INT, &status);
 MPI_File_close(&fh);

 /* reopen the file and read the data back */

 for (i=0; i<nints; i++) buf[i] = 0;
 MPI_File_open(MPI_COMM_SELF, filename,
 MPI_MODE_CREATE | MPI_MODE_RDWR,
 MPI_INFO_NULL, &fh);

146 Appendix A

Example applications
io.c

 MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, MPI_INT, "native",
 MPI_INFO_NULL);
 MPI_File_read(fh, buf, nints, MPI_INT, &status);
 MPI_File_close(&fh);

 /* check if the data read is correct */
 flag = 0;
 for (i=0; i<nints; i++)
 if (buf[i] != (rank*100000 + i)) {
 printf("Process %d: error, read %d, should be %d\n",
 rank, buf[i], rank*100000+i);
 flag = 1;
 }

 if (!flag) {
 printf("Process %d: data read back is correct\n", rank);
 MPI_File_delete(filename, MPI_INFO_NULL);
 }

 free(buf);
 free(filename);

 MPI_Finalize();
 exit(0);
}

io output
The output from running the io executable is shown below. The
application was run with -np = 4.

Process 1: data read back is correct
Process 3: data read back is correct
Process 2: data read back is correct
Process 0: data read back is correct

Appendix A 147

Example applications
thread_safe.c

thread_safe.c
In this C example, N clients loop MAX_WORK times. As part of a single
work item, a client must request service from one of Nservers at random.
Each server keeps a count of the requests handled and prints a log of the
requests to stdout.

#include <stdio.h>
#include <mpi.h>
#include <pthread.h>

#define MAX_WORK 40
#define SERVER_TAG 88
#define CLIENT_TAG 99
#define REQ_SHUTDOWN -1

static int service_cnt = 0;
int process_request(request)
int request;

{
 if (request != REQ_SHUTDOWN) service_cnt++;
 return request;
}

void* server(args)
void *args;

{
 int rank, request;
 MPI_Status status;
 rank = *((int*)args);

 while (1) {
 MPI_Recv(&request, 1, MPI_INT, MPI_ANY_SOURCE,
 SERVER_TAG, MPI_COMM_WORLD, &status);

 if (process_request(request) == REQ_SHUTDOWN)
 break;

 MPI_Send(&rank, 1, MPI_INT, status.MPI_SOURCE,
 CLIENT_TAG, MPI_COMM_WORLD);

 printf("server [%d]: processed request %d for client %d\n",
 rank, request, status.MPI_SOURCE);
 }

 printf("server [%d]: total service requests: %d\n", rank, service_cnt);
 return (void*) 0;
}

148 Appendix A

Example applications
thread_safe.c

void client(rank, size)
int rank;
int size;

{
 int w, server, ack;
 MPI_Status status;

 for (w = 0; w < MAX_WORK; w++) {
 server = rand()%size;

 MPI_Sendrecv(&rank, 1, MPI_INT, server, SERVER_TAG, &ack,
 1,MPI_INT,server,CLIENT_TAG,MPI_COMM_WORLD, &status);

 if (ack != server) {
 printf("server failed to process my request\n");
 MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);
 }
 }
}

void shutdown_servers(rank)
int rank;

{
 int request_shutdown = REQ_SHUTDOWN;
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Send(&request_shutdown, 1, MPI_INT, rank, SERVER_TAG, MPI_COMM_WORLD);
}

main(argc, argv)
int argc;
char *argv[];

{
 int rank, size, rtn;
 pthread_t mtid;
 MPI_Status status;
 int my_value, his_value;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 rtn = pthread_create(&mtid, 0, server, (void*)&rank);
 if (rtn != 0) {
 printf("pthread_create failed\n");
 MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);
 }

 client(rank, size);
 shutdown_servers(rank);

Appendix A 149

Example applications
thread_safe.c

 rtn = pthread_join(mtid, 0);
 if (rtn != 0) {
 printf("pthread_join failed\n");
 MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);
 }

 MPI_Finalize();
 exit(0);
}

thread_safe output
The output from running the thread_safe executable is shown below. The
application was run with -np = 2.

server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0

150 Appendix A

Example applications
thread_safe.c

server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: total service requests: 48
server [1]: total service requests: 32

Appendix B 151

B XMPI resource file

This appendix displays the contents of the XMPI Xresource file stored in
/opt/mpi/lib/X11/app-defaults/XMPI.

You should make your own copy of the resource file (you can copy it to the
.Xdefaults file in your home directory) and tailor it accordingly.

To save your changes and rebuild the Xresource database from scratch,
enter:

% xrdb filename

To save your changes and merge them into the existing Xresource
database, enter:

% x-rdb -merge filename

In both cases, filename represents the name of your tailored resource
file.

XMPI*Title:XMPI
XMPI*IconName:XMPI
XMPI*multiClickTime:500
XMPI*background:lightgray
XMPI*fontList:-*-helvetica-bold-r-normal--*-120-*-*-*-*-*-*
XMPI*msgFont:-*-helvetica-medium-r-normal--*-120-*-*-*-*-*-*
XMPI*fo_func.fontList:-*-helvetica-bold-o-normal--*-120-*-*-*-*-*-*
XMPI*dt_dtype.fontList:-*-helvetica-medium-r-normal--*-100-*-*-*-*-*-*
XMPI*ctl_bar.bottomShadowColor:darkslateblue
XMPI*ctl_bar.background:slateblue
XMPI*ctl_bar.foreground:white
XMPI*banner.background:slateblue
XMPI*banner.foreground:white
XMPI*view_draw.background:black
XMPI*view_draw.foreground:gray
XMPI*trace_draw.foreground:black
XMPI*kiviat_draw.background:gray
XMPI*kiviat_draw.foreground:black
XMPI*matrix_draw.background:gray
XMPI*matrix_draw.foreground:black
XMPI*app_list.visibleItemCount:8
XMPI*aschema_text.columns:24
XMPI*prog_mgr*columns:16
XMPI*comCol:cyan
XMPI*rcomCol:plum
XMPI*label_frame.XmLabel.background:#D3B5B5
XMPI*XmToggleButtonGadget.selectColor:red
XMPI*XmToggleButton.selectColor:red

152 Appendix B

XMPI resource file

153

Glossary

asynchronous Communication
in which sending and receiving
processes place no constraints on
each other in terms of completion.
The communication operation
between the two processes may
also overlap with computation.

bandwidth Reciprocal of the
time needed to transfer a byte.
Bandwidth is normally expressed
in megabytes per second.

barrier Collective operation
used to synchronize the execution
of processes. MPI_Barrier blocks
the calling process until all
receiving processes have called it.
This is a useful approach for
separating two stages of a
computation so messages from
each stage are not overlapped.

blocking receive
Communication in which the
receiving process does not return
until its data buffer contains the
data transferred by the sending
process.

blocking send Communication
in which the sending process does
not return until its associated data
buffer is available for reuse. The
data transferred can be copied
directly into the matching receive
buffer or a temporary system
buffer.

broadcast One-to-many
collective operation where the root
process sends a message to all
other processes in the
communicator including itself.

buffered send mode Form of
blocking send where the sending
process returns when the message
is buffered in application-supplied
space or when the message is
received.

buffering Amount or act of
copying that a system uses to avoid
deadlocks. A large amount of
buffering can adversely affect
performance and make MPI
applications less portable and
predictable.

cluster Group of computers
linked together with an
interconnect and software that
functions collectively as a parallel
machine.

collective communication
Communication that involves
sending or receiving messages
among a group of processes at the
same time. The communication
can be one-to-many, many-to-one,
or many-to-many. The main
collective routines are
MPI_Bcast , MPI_Gather , and
MPI_Scatter .

154

communicator Global object
that groups application processes
together. Processes in a
communicator can communicate
with each other or with processes
in another group. Conceptually,
communicators define a
communication context and a
static group of processes within
that context.

context Internal abstraction
used to define a safe
communication space for
processes. Within a communicator,
context separates point-to-point
and collective communications.

data-parallel model Design
model where data is partitioned
and distributed to each process in
an application. Operations are
performed on each set of data in
parallel and intermediate results
are exchanged between processes
until a problem is solved.

derived data types User-
defined structures that specify a
sequence of basic data types and
integer displacements for
noncontiguous data. You create
derived data types through the use
of type-constructor functions that
describe the layout of sets of
primitive types in memory.
Derived types may contain arrays
as well as combinations of other
primitive data types.

domain decomposition
Breaking down an MPI
application’s computational space
into regular data structures such
that all computation on these
structures is identical and
performed in parallel.

explicit parallelism
Programming style that requires
you to specify parallel constructs
directly. Using the MPI library is
an example of explicit parallelism.

functional decomposition
Breaking down an MPI
application’s computational space
into separate tasks such that all
computation on these tasks is
performed in parallel.

gather Many-to-one collective
operation where each process
(including the root) sends the
contents of its send buffer to the
root.

granularity Measure of the
work done between
synchronization points. Fine-
grained applications focus on
execution at the instruction level of
a program. Such applications are
load balanced but suffer from a low
computation/communication ratio.
Coarse-grained applications focus
on execution at the program level
where multiple programs may be
executed in parallel.

group Set of tasks that can be
used to organize MPI applications.
Multiple groups are useful for
solving problems in linear algebra
and domain decomposition.

hypernode Building block of an
Exemplar-scalable system. Each
hypernode consists of a number of
processors, I/O, and memory
connected by a crossbar and joined
to other hypernodes by a Coherent
Toroidal Interconnect link.

155

implicit parallelism
Programming style where
parallelism is achieved by software
layering (that is, parallel
constructs are generated through
the software). High performance
Fortran is an example of implicit
parallelism.

intercommunicators
Communicators that allow only
processes within the same group or
in two different groups to exchange
data. These communicators
support only point-to-point
communication.

intracommunicators
Communicators that allow
processes within the same group to
exchange data. These
communicators support both point-
to-point and collective
communication.

instrumentation Cumulative
statistical information collected
and stored in ascii format.
Instrumentation is the
recommended method for
collecting profiling data.

latency Time between the
initiation of the data transfer in
the sending process and the arrival
of the first byte in the receiving
process.

load balancing Measure of how
evenly the work load is distributed
among an application’s processes.
When an application is perfectly
balanced, all processes share the
total work load and complete at
the same time.

locality Degree to which
computations performed by a
processor depend only upon local
data. Locality is measured in
several ways including the ratio of
local to nonlocal data accesses.

message-passing model Model
in which processes communicate
with each other by sending and
receiving messages. Applications
based on message passing are
nondeterministic by default.
However, when one process sends
two or more messages to another,
the transfer is deterministic as the
messages are always received in
the order sent.

MIMD Multiple instruction
multiple data. Category of
applications in which many
instruction streams are applied
concurrently to multiple data sets.

MPI Message-passing interface.
Set of library routines used to
design scalable parallel
applications. These routines
provide a wide range of operations
that include computation,
communication, and
synchronization. MPI 1.2 is the
current standard supported by
major vendors.

MPMD Multiple data multiple
program. Implementations of
HP MPI that use two or more
separate executables to construct
an application. This design style
can be used to simplify the
application source and reduce the
size of spawned processes. Each
process may run a different
executable.

156

multilevel parallelism Refers
to multithreaded processes that
call MPI routines to perform
computations. This approach is
beneficial for problems that can be
decomposed into logical parts for
parallel execution (for example, a
looping construct that spawns
multiple threads to perform a
computation and then joins after
the computation is complete).

nonblocking receive
Communication in which the
receiving process returns before a
message is stored in the receive
buffer. Nonblocking receives are
useful when communication and
computation can be effectively
overlapped in an MPI application.
Use of nonblocking receives may
also avoid system buffering and
memory-to-memory copying.

nonblocking send
Communication in which the
sending process returns before a
message is stored in the send
buffer. Nonblocking sends are
useful when communication and
computation can be effectively
overlapped in an MPI application.

NUMA Nonuniform memory
access architecture. Amount of
time for processes to access
memory across hypernodes is
nonuniform depending upon where
data is stored.

parallel efficiency An
increase in speed in the execution
of a parallel application.

point-to-point
communication
Communication where data
transfer involves sending and
receiving messages between two
processes. This is the simplest
form of data transfer in a message-
passing model.

polling Mechanism to handle
asynchronous events by actively
checking to determine if an event
has occurred.

process Address space together
with a program counter, a set of
registers, and a stack. Processes
can be single threaded or
multithreaded. Single-threaded
processes can only perform one
task at a time. Multithreaded
processes can perform multiple
tasks concurrently as when
overlapping computation and
communication.

race condition Situation in
which multiple processes vie for
the same resource and receive it in
an unpredictable manner. Race
conditions can lead to cases where
applications do not run correctly
from one invocation to the next.

rank Integer between zero and
(number of processes - 1) that
defines the order of a process in a
communicator. Determining the
rank of a process is important
when solving problems where a
master process partitions and
distributes work to slave processes.
The slaves perform some
computation and return the result
to the master as the solution.

157

ready send mode Form of
blocking send where the sending
process cannot start until a
matching receive is posted. The
sending process returns
immediately.

reduction Binary operations
(such as summation,
multiplication, and boolean)
applied globally to all processes in
a communicator. These operations
are only valid on numeric data and
are always associative but may or
may not be commutative.

scalable Ability to deliver an
increase in application
performance proportional to an
increase in hardware resources
(normally, adding more
processors).

scatter One-to-many operation
where the root’s send buffer is
partitioned into n segments and
distributed to all processes such
that the ith process receives the
ith segment. n represents the total
number of processes in the
communicator.

send modes Point-to-point
communication in which messages
are passed using one of four
different types of blocking sends.
The four send modes include
standard mode (MPI_Send),
buffered mode (MPI_Bsend),
synchronous mode (MPI_Ssend),
and ready mode (MPI_Rsend). The
modes are all invoked in a similar
manner and all pass the same
arguments.

shared memory model Model
in which each process can access a
shared address space. Concurrent
accesses to shared memory are
controlled by synchronization
primitives.

SIMD Single instruction
multiple data. Category of
applications in which
homogeneous processes execute
the same instructions on their own
data.

SPMD Single program multiple
data. Implementations of HP MPI
where an application is completely
contained in a single executable.
SPMD applications begin with the
invocation of a single process
called the master. The master then
spawns some number of identical
child processes. The master and
the children all run the same
executable.

standard send mode Form of
blocking send where the sending
process returns when the system
can buffer the message or when
the message is received.

stride Constant amount of
memory space between data
elements where the elements are
stored noncontiguously. Strided
data are sent and received using
derived data types.

subcomplex Group of
processors and their associated
memory that may span multiple
hypernodes on the same host.
Hosts are partitioned into
subcomplex configurations to
achieve the best mix of hardware
and software resources.

158

synchronization Bringing
multiple processes to the same
point in their execution before any
can continue. For example,
MPI_Barrier is a collective
routine that blocks the calling
process until all receiving
processes have called it. This is a
useful approach for separating
two stages of a computation so
messages from each stage are not
overlapped.

synchronous send mode Form
of blocking send where the sending
process returns only if a matching
receive is posted and the receiving
process has started to receive the
message.

tag Integer label assigned to a
message when it is sent. Message
tags are one of the synchronization
variables used to ensure that a
message is delivered to the correct
receiving process.

task Uniquely addressable
thread of execution.

thread Smallest notion of
execution in a process. All MPI
processes have one or more
threads. Multithreaded processes
have one address space but each
process thread contains its own
counter, registers, and stack. This
allows rapid context switching
because threads require little or no
memory management.

thread compliant An
implementation where an MPI
process may be multithreaded. If it
is, each thread can issue MPI calls.
However, the threads themselves
are not separately addressable.

topologies Process
configurations that determine
which processes to run on specific
hypernodes in a given
subcomplex. You can use the
MPI_TOPOLOGY environment
variable in HP MPI or one of the
MPI library routines (for example,
MPI_GRAPH_CREATE or
MPI_CART_CREATE) to define an
application topology.

trace Information collected
during program execution that you
can use to analyze your
application. You can collect trace
information and store it in a file for
later use or analyze it directly
when running your application
interactively (for example, when
you run an application in the
XMPI utility).

159

Index

Symbols
+autodbl problems, 110
+DA2 option, 37
+DD64 option, 37
.tr output file, 85
.X defaults file, 151
/opt/aCC/bin/aCC, 36
/opt/ansic/bin/cc, 36
/opt/fortran/bin/f77, 36
/opt/fortran90/bin/f90, 36
/opt/mpi

subdirectories, 34
/opt/mpi directory, 20

organization of, 34
/opt/mpi/bin, 34
/opt/mpi/doc/html, 34
/opt/mpi/help, 34
/opt/mpi/include, 34
/opt/mpi/lib/pa1.1/libfmpi.a, 34
/opt/mpi/lib/pa20.64/libfmpi.a,

34
/opt/mpi/lib/X11/app-defaults, 34
/opt/mpi/newconfig/, 34
/opt/mpi/share/man/man1.Z, 34
/opt/mpi/share/man/man3.Z, 34

Numerics
64-bit support, 37

A
abort HP MPI, 91
aCC, 36
add

/opt/mpi/bin, 20
/opt/mpi/share/man, 20

amount variable, 46
appfile, 39

configure for multiple network
interfaces, 98

create, 58
description of, 23
hello_world, 113

application process placement
under SPP-UX, 47

array partitioning, 136
asynchronous, definition of, 153
automatic snapshot, 85
Automatic snapshot field, 88

B
bandwidth, 6, 100

definition of, 96, 153
improve, 96

barrier, 14
barrier, definition of, 153
blocked process, 76
blocking communication, 7

buffered mode, 8
MPI_Bsend, 8
MPI_Rsend, 8
MPI_Send, 8
MPI_Ssend, 8
point-to-point, 76
read mode, 8
receive mode, 8
send mode, 8
standard mode, 8
synchronous mode, 8

blocking receive, 9
blocking send, 8
blocklength variable, 15
broadcast, 12
buf variable, 8, 9, 10, 12
Buffer size field, 91
buffered send mode, definition

of, 153
buffering, definition of, 153
build

application, 21
hello_world, 22
HP MPI, 110
MPI on multiple hosts, 22
MPI on single host, 22
output, 23

problems, 110
build examples, 120

C
C compiler utility, 36
C examples

communicator.c, 119, 134
io.c, 145
ping_pong.c, 119, 123
thread_safe.c, 147

C++ compiler utility, 36
C++ examples

cart.C, 119, 130
cart.C, 119
change default settings, 88
change execution location, 50
change viewing options, 88
checkpoint HP MPI, 50
cluster, definition of, 153
cnt

See data element count
cnt field, 80, 81
code a

blocking receive, 9
blocking send, 8
broadcast, 12
nonblocking send, 10
pack, 16
scatter, 12

code error conditions, 115
collect

profile information, 66
statistics, 93

collect profile information
See MPIHP_Trace_off
See MPIHP_Trace_on

collective communication, 10, 76
definition of, 153
MPI_Bcast, 11
MPI_Scatter, 11

collective operations, 10
communication, 10

160

comm
no. of processes named, 7

comm field, 79, 80
comm variable, 8, 9, 10, 12, 13,

16
command files for HP MPI

utilities, 34
communication context, 9, 13
communication, using

daemons, 62
communicator

defaults, 6
definition of, 154

communicator.c, 119
compilation utilities, 35
compiler environment

variables, 36
compiling applications, 36
completing HP MPI, 115
completion routine, 7
Complying with the MPI 2.0

standard
I/O, 26
language interoperability, 28
miscellaneous features, 32
thread-compliant library, 29

computation, 13
computational models

parallel, 2
compute_pi.f, 66, 119
configuration files, 34
configure environment, 20

setenv MANPATH, 20
setenv MPI_ROOT, 20
setenv PATH, 20

constructor functions
contiguous, 15
indexed, 15
structure, 15
vector, 15

context
communication, 9

communication that ids
processes, 13

context switching, problems of,
100

context, definition of, 154
convert objects between

languages, 28
copy

See number of message copies
sent

copy field, 81
corresponding MPI blocking/

nonblocking calls, 9
count variable, 8, 9, 10, 12, 15
counter instrumentation, 51,

66
create profile, 66

CPSlib
row-column-block

partitioning, 137
create

appfile, 58
instrumentation profile, 66
trace file, 72
vector data type, 15

current dial time, 78, 79
CXperf, 92

D
daemons, using for

communication, 62
data element count, 81
data-parallel model, definition

of, 154
Datatype dialog, 77
DDE, 108
debug HP MPI, 107
decrease trace magnification,

75
default process placement, 103
definitions

asynchronous, 153

bandwidth, 153
barrier, 153
blocking receive, 153
blocking send, 153
broadcast, 153
buffered send mode, 153
buffering, 153
cluster, 153
collective communication, 153
communicator, 154
context, 154
derived data types, 154
domain decomposition, 154
explicit parallelism, 154
functional decomposition, 154
gather, 154
granularity, 154
group, 154
hypernode, 154
implicit parallelism, 155
instrumentation, 155
intercommunicators, 155
intracommunicators, 155
latency, 155
load balancing, 155
locality, 155
message-passing model, 155
MIMD, 155
MPI, 155
MPMD, 155
multilevel parallelism, 156
nonblocking receive, 156
nonblocking send, 156
NUMA, 156
parallel efficiency, 156
point-to-point

communication, 156
polling, 156
process, 156
race condition, 156
rank, 156
readysend mode, 157
reduction, 157

161

scalable, 157
scatter, 157
send modes, 157
shared memory modes, 157
SIMD, 157
SPMD, 157
standard send mode, 157
stride, 157
subcomplex, 157
synchronization, 157, 158
synchronous send mode, 158
tag, 158
task, 158
thread, 158
topologies, 158
trace, 158

derived data types
create to store contiguous

data, 14
definition of, 154

dest variable, 8, 9, 10
determine

group size, 5
no. of processes named comm,

7
rank of calling process, 5

diagnostics library
message signature analysis,

109
MPI object-space corruption,

109
multiple buffer writes

detection, 109
dial time, 75

current, 78, 79
dialogs

Datatype, 77
Focus, 77
Kiviat, 77
mpirun options, 90
mpirun options trace, 85
XMPI Application Browser,

83

XMPI buffer size, 89
XMPI Confirmation, 86
XMPI Datatype, 80
XMPI Dump, 85
XMPI Express, 86
XMPI Focus, 79
XMPI Kiviat, 82
XMPI monitor options, 88
XMPI Trace, 75
XMPI Trace Selection, 74

directory structure, MPI, 34
domain decomposition,

definition of, 154
dtype variable, 8, 9, 10, 12, 13,

16
Dump, 85

E
ecxbd, 108
edde, 108
egdb, 108
elapsed run-time, 78
enable trace generation, 90
enable verbose mode, 90
environment variable

compilation, 37
environment variables

compilers, 36
MPI_CC, 36
MPI_CXX, 36
MPI_F77, 36
MPI_F90, 36
MPI_FLAGS, 108
run-time, 42

error conditions, code, 115
example applications, 119

cart.C, 119
commuicator.c, 119
compute pi, 119
compute_pi.f, 66, 119
copy default communicator,

119

distribute sections/compute in
parallel, 119

generate virtual topology, 119
master_worker.f90, 119
measure send/receive time,

119
multi_par.f, 119
ping_pong.c, 119
receive operation, 119
send operation, 119
send_receive.f, 119
use ADI on 2D compute

region, 119
exceeding file descriptor limit,

114
exdb, 108
explicit parallelism, definition

of, 154
Express option

get full trace, 86
get partial trace, 87

external input and output
problems, 113

F
FAQ, 107, 116
Fast Forward

See trace file
fast forward trace log, 76
Focus dialog, 77
Fortran 77 examples

array partitioning, 136
compute_pi.f, 119, 126
multi_par.f, 119, 135
send_receive.f, 119, 121

Fortran 77 utility, 36
Fortran 90 examples

master_worker.f90, 128
Fortran 90 problems, 114
Fortran 90 utility, 36
frequently asked questions,

107, 116

162

full trace, 86
fully subscribed

See subscription types
functional decomposition,

definition of, 154

G
gather, definition of, 154
GDB, 108
get full trace, 86
get partial trace, 87
getting started, 19
granularity, definition of, 154
green

See process colors
See process state

group size, 5
group, definition of, 154

H
header files, 34
hexagons, 84
hosts, assigning using LSF, 64
HP MPI

abort, 91
building, 110
change behavior, 43
checkpoint, 50
clean-up, 116
collect statistics, 93
completing, 115
debug, 107
FAQ, 107, 116
frequently asked questions,

116
general features, 35
jobs running, 59
kill, 60
kill job (alternate method), 61
kill job (preferred method), 61
measure performance, 93
profile process, 92

restart, 50
running, 111
single-process debuggers, 108
specify shared memory, 46
start, 55
starting, 110
troubleshooting, 107, 110
twisted-data layout, 137
understanding, 25
utility command files, 34

HP MPI features
compliance with the MPI 1.2

standard, xii
compliance with the UNIX 95

standard, xii
data mover, xii
derived data types, xiii
multiprotocol support, xii
profiling, xii
single program multiple data

and multiple program
multiple data, xii

HP MPI User’s Guide (html), 34
hypernode(s) running on SPP-

UX, 116
hypernode, definition of, 154

I
implement

barrier, 14
reduction, 13

implicit parallelism, definition
of, 155

improve
bandwidth, 96
latency, 96
network performance, 98

inbuf variable, 16
incount variable, 16
increase trace magnification, 75
initialize MPI environment, 5
Initially off field, 91

instrumentation
create profile, 66

interactive mode
, 83

intercommunicators, 6
interhost communication

See multiple network
interfaces

interoperability problems, 112
interrupt calls to MPI library

See profiling interface
intracommunicators, 6

J
-j option, 38
job ID, 38, 90

K
Keep raw traces after

formatting field, 91
kill

MPI application, 87
MPI jobs, 60

Kiviat
dialog, 77
views, 82

L
latency, 6, 100

definition of, 96, 155
improve, 96

load balancing, definition of,
155

locality, definition of, 155
logical hypernode numbering,

47
LSF (load sharing facility), 64

163

M
magnify trace log, 76
main window, XMPI, 73
man pages

categories table, 35
compilation, 35
general, 35
HP MPI library, 34
HP MPI utilities, 34
run-time, 35

MANPATH variable, 20
master_worker.f90, 119
measure performance, 93
message bandwidth

achieve highest, 100
process placement, 101

message buffering problems,
112

message label, 9
message latency

achieve lowest, 100
process placement, 101

message latency/bandwidth, 96
message passing, 2

advantages, 3
message passing interface, 155
message queue, XMPI, 80
message signature analysis,

109
message_size, 6
message-passing model,

definition of, 155
messaging

multiprotocol, 40
MIMD, definition of, 155
Monitor interval in second field,

89
MP_GANG, 42, 53
mpa utility, 48, 118
MPI

app hangs at MPI_Send, 118
build application on multiple

hosts, 22

build application on single
host, 22

change execution source, 50
definition of, 155
directory structure, 34
initialize environment, 5
prefix, 93
routine selection, 100
run application, 21, 38
run application on multiple

hosts, 22
run application on single host,

22
run processes with mpa, 118
scatter operation, 11
terminate environment, 5

MPI application
build, 21
run, 21

MPI concepts
full asynchronous

communication, 4
group membership, 4
portability, 4
sync. variables protect process

messaging, 4
MPI I/O, 26
MPI library extensions

64-bit Fortran, 34
Fortran 32-bit, 34

MPI library routines
commonly used, 5
MPI_Comm_rank, 5
MPI_Comm_size, 5
MPI_Finalize, 5
MPI_init, 5
MPI_Recv, 5
MPI_Send, 5
number of, 4

MPI object-space corruption,
109

MPI The Complete Reference, 17
MPI web sites, xvi

MPI_ANY_SOURCE
See Also improve latency

MPI_Barrier, 13, 14
MPI_Bcast, 5, 11, 12
MPI_Bsend, 8
MPI_CHECKPOINT, 42, 50
MPI_Comm MPI_Comm_c2f,

28
MPI_Comm_rank, 5, 38
MPI_COMM_SELF, 6
MPI_Comm_size, 5
MPI_COMM_WORLD, 6
MPI_COMMD, 42, 52
MPI_Datatype MPI_Type_f2c,

28
MPI_DLIB_FLAGS, 42, 45
MPI_Finalize, 5

using to clean up, 116
MPI_Fint MPI_Comm_c2f, 28
MPI_Fint MPI_Group_c2f, 28
MPI_Fint MPI_Op_c2f, 28
MPI_Fint MPI_Request_c2f, 28
MPI_Fint MPI_Request_f2c, 29
MPI_Fint MPI_Type_c2f, 28
MPI_FLAGS, 42, 43

using to troubleshoot, 108
MPI_FLAGS options

DDE, 108
GDB, 108
XDB, 108

MPI_GLOBMEMSIZE, 42, 46
MPI_Group MPI_Group_f2c, 28
MPI_Ibsend, 9
MPI_Init, 5
MPI_INSTR, 42, 51
MPI_Irecv, 9
MPI_Irsend, 9
MPI_Isend, 9, 10
MPI_Issend, 9
MPI_LOCALIP, 42, 53
MPI_MT_FLAGS, 45
MPI_Op MPI_Op_c2f, 28
MPI_Pack, 14, 16

164

MPI_PROD, 13
MPI_Recv, 5, 9

high message bandwidth, 100
low message latency, 100

MPI_Reduce, 13
MPI_ROOT variable, 20
MPI_Rsend, 8
MPI_Scatter, 11, 12
MPI_Send, 5, 8, 118

high message bandwidth, 100
low message latency, 100

MPI_SHMEMCNTL, 42, 48
MPI_Ssend, 8
MPI_Status_c2f, 29
MPI_Status_f2c, 29
MPI_SUM, 13
MPI_TMPDIR, 42, 48
MPI_TOPOLOGY, 42, 47

See Also improve network
performance

syntax, 117
MPI_Type_Vector, 15
MPI_Unpack, 14
MPI_WORKDIR, 42, 50
MPI_XMPI, 42, 49
mpiCC utility, 36
mpicc utility, 36
mpiclean, 38, 54, 60, 115
mpif77, 36
mpif77 utility, 36
mpif90, 36
mpif90 utility, 36
MPIHP_Trace_off, 66, 72
MPIHP_Trace_on, 66, 72
mpijob, 38, 54, 59
mpirun, 54, 55

options dialog, 90
options trace dialog, 85, 90
options trace dialog field, 85
run applications, 38
trace file generation, 50
-W option, 113

mpirun options dialog fields

Print job ID field, 90
mpirun options fields

Buffer size, 91
Initially off, 91
Keep raw traces after

formatting, 91
No clobber, 91
No format at MPI_Finalize(),

91
Prefix, 91
Simpler trace, 91
Tracing, 90
Verbose, 90

mpirun options trace dialog
Tracing button, 86

mpiview, 54, 62, 70
MPMD

applications, 38
definition of, 155
run applications, 39

multi_par.f, 119
multilevel parallelism, 16, 101

achieving, 101
multilevel

parallelism,definition of,
156

multiple buffer writes
detection, 109

multiple data multiple
program, 155

multiple instruction multiple
data, 155

multiple network interfaces, 98
configure in appfile, 98
diagram of, 99
improve performance, 98
using, 98

multiple threads, 16
multiprotocol messaging, 40

V2200 server, 41
X-class server, 40

multithreaded process, 16

N
network interfaces, 98
newtype variable, 15
no clobber

See HP MPI abort
No clobber field, 91
No format at MPI_Finalize()

field, 91
nonblocking communication, 7,

9
buffered mode, 9
MPI_Ibsend, 9
MPI_Irecv, 9
MPI_Irsend, 9
MPI_Isend, 9
MPI_Issend, 9
point-to-point, 76
ready mode, 9
receive mode, 9
standard mode, 9
synchronous mode, 9

nonblocking receive, definition
of, 156

nonblocking send, 10
non-default compilers, 36
nonuniform memory access

architecture, 156
NUMA, definition of, 156
number of message copies sent,

81
number of MPI library routines,

4

O
o, 156
oldtype variable, 15
one-sided communication, 32
op variable, 13
optimal process placement, 104
organization of /opt/mpi, 34
outbuf variable, 16
outsize variable, 16

165

over subscribed
See subscription types

overhead process, 76

P
pack, 16
parallel application

message passing, 3
parallel computational models

message passing, 2
remote memory operations, 2
shared memory, 2
threads, 2

parallel efficiency, definition of,
156

partial trace, 87
PATH variable, 20
peer

See rank
performance problems

message latency/bandwidth,
96

performance tuning
on SPP-UX, 101

ping_pong.c, 119
Play

See trace file
play trace file, 77
play trace log, 76
PMPI prefix, 93
point-to-point communication

definition of, 156
point-to-point communications,

6
blocking, 76
nonblocking, 76
See Also nonblocking

communication
See also blocking

communication
polling, definition of, 156
position variable, 16

postmortem mode, 72
predefined operations, 13
prefix

MPI, 93
PMPI, 93

Prefix field, 85, 91
preventing processor

oversubscription, 103
print HP MPI job ID, 90
print job ID

See print HP MPI job id
problems

+autodbl, 110
application hangs at

MPI_Send, 118
build, 110
due to Fortran 90 features,

114
exceeding file descriptor limit,

114
external input and output,

113
interoperability, 112
message buffering, 112
performance, 96
propagation of environment

variables, 111
run-time, 111
shared memory, 111
time out, 116
unexpected Fortran 90

behavior, 114
UNIX open file descriptors,

114
process

blocked, 76
colors, 76
definition of, 156
hexagons, 84
multithreaded, 16
overhead, 76
placement, 101
profile in HP MPI, 92

rank, 76
rank of peer process, 79
rank of root, 13
rank of source, 9
reduce communications, 96
running, 76
single-threaded, 16
state, 78, 84
states, 76
XMPI Focus dialog, 79

process info
view from trace, 78

process placement
default, 103
optimal, 104
using MPI_TOPOLOGY, 104

processor subscription, 99
profiling

interface, 93
using counter

instrumentation, 66
using CXperf, 92
using XMPI, 71

profiling interface, 93
progression, 97
propagation of environment

variables, 111

R
race condition, definition of, 156
rank, 7

definition of, 156
of calling process, 5
of root process, 13
of source process, 9

raw trace generation, 49, 116
readysend mode, definition of,

157
rebuild Xresource database,

151
receive

message information, 9

166

message methods, 7
messages, 5
messages between 2

processes, 6
receive buffer

address, 13
data type of, 13
data type of elements, 9
number of elements in, 9
starting address, 9

recvbuf variable, 13
recvbuf variables, 12
recvcount variable, 12
recvtype variable, 12
red

See process colors
See process state

reduction
implement, 13
operation, 13

reduction operation, 13
reduction, definition of, 157
release notes, 34
remote memory operations, 2
req variable, 10
restart HP MPI, 50
rewind trace log, 75
root variable, 12, 13
root, the, 10
routine selection, 100
run

appfile interactively, 83
application, 21
HP MPI, 111
invocations that support

stdin, 113
MPI application, 38
MPI on multiple hosts, 22
MPI on single host, 22
MPI processes with mpa, 118
process, 76
XMPI, 61

run examples, 120

run invocations, 113
run-time

elapsed, 78
environment variables, 42
problems, 111
utilities, 35
utility commands

mpiclean, 54
mpirun, 54

run-time environment variables
MP_GANG, 42
MPI_CHECKPOINT, 42
MPI_COMMD, 42
MPI_DLIB_FLAGS, 42
MPI_FLAGS, 42
MPI_GLOBMEMSIZE, 42
MPI_INSTR, 42
MPI_LOCALIP, 42
MPI_SHMEMCNTL, 42
MPI_TMPDIR, 42
MPI_TOPOLOGY, 42
MPI_WORKDIR, 42
MPI_XMPI, 42

run-time options, 45

S
scalable, definition of, 157
scatter, 12

definition of, 157
scm utility, 48
See Also MPI_FLAGS
select process, 79
select reduction operation, 13
Selection field, 84
send

data in one operation, 5
message methods, 7
messages, 5
messages between 2

processes, 6
send buffer

address, 13

data type of, 13
number of elements in, 13

send modes, definition of, 157
send_receive.f, 119
sendbuf variable, 12, 13
sendcount variable, 12
sending process rank, 80
sendtype variable, 12
set compilation environment

variable, 37
setenv

MANPATH, 20
MPI_ROOT, 20
PATH, 20

setting up view options, 88
shared memory, 2
shared memory modes

control subdivision of, 48
specify, 46

shared memory modes,
definition of, 157

shared memory problems, 111
SIGPROF, 44
SIMD, definition of, 157
Simpler trace field, 91
single instruction multiple

data, 157
single program multiple data,

157
single-process debuggers, 108
single-threaded processes, 16
snapshot utility, 85
solving build problems, 110
source variable, 9
SPMD

applications, 38
definition of, 157
run applications, 38

SPP-UX
application process

placement, 47
hypernode, 116
performance tuning, 101

167

src
 See sending process rank

src field, 80
standard send mode, definition

of, 157
starting

HP MPI, 110
multihost applications, 110

state of process, 84
status variable, 9
stdin support, 113
stop playing trace log, 76
storing temp files, 48
stride variable, 15
stride, definition of, 157
subcomplex, definition of, 157
subdivision of shared memory,

48
subscription

definition of, 99
types, 99

swapping overhead, 46
synchronization, 13
synchronization, definition of,

157, 158
synchronous send mode,

definition of, 158
syspic utility, 116
system default subcomplex, 48

T
-t option, 50, 72
tables

man page categories, 35
organization of /opt/mpi, 34

tag
See tag argument value

tag argument value, 79, 80
tag field, 79, 80
tag variable, 8, 9, 10
tag, definition of, 158
task, definition of, 158

terminate MPI environment, 5
thread compliant, 158
thread safety, 29
thread, definition of, 158
threads, 2

multiple, 16
time out problems, 116
topologies, definition of, 158
Topology optimization, 105
total transfer time, 6
trace

definition of, 158
get full, 86
get partial, 87
view process info, 78

Trace dialog, 85
trace file

create, 72
play, 77
state, 77
view kiviat info from

, 82
viewing, 73

trace file generation
enable run-time raw, 90
raw, 49
using

mpirun, 50
XMPI, 50

trace log
fast forward, 76
magnification, 76
play, 76
rewind, 75
set magnification, 76
stop playing, 76

trace magnification
decrease, 75
increase, 75

Trace Selection dialog, 74
tracing

See trace file generation
Tracing button, 86

Tracing field, 90
troubleshooting, 107

HP MPI, 107
mpiclean, 38
mpijob, 38
See MPIHP_Trace_off
See MPIHP_Trace_on
using MPI_FLAGS, 108

troubleshooting HP MPI, 110
tuning, 95

information, 95
selecting appropriate, 95

U
under subscribed

See subscription types
understanding HP MPI, 25
UNIX open file descriptors

problems, 114
using

counter instrumentation, 66
multiple network interfaces,

98
profiling interface, 93
XMPI in interactive mode, 83,

88
XMPI in postmortem mode,

72, 73
using mpirun

run applications, 38
using the profiling interface, 93

V
V2200 server

collective protocols, 41
multiprotocol messaging, 41
point-to-point protocols, 41

variables
blocklength, 15
buf, 8, 9, 10, 12
comm, 8, 9, 10, 12, 13, 16
count, 8, 9, 10, 12, 15

168

dest, 8, 9, 10
dtype, 8, 9, 10, 12, 13, 16
inbuf, 16
incount, 16
MANPATH, 20
MPI_ROOT, 20
newtype, 15
oldtype, 15
op, 13
outbuf, 16
outsize, 16
PATH, 20
position, 16
recvbuf, 12, 13
recvcount, 12
recvtype, 12
req, 10
root, 12, 13
sendbuf, 12, 13
sendcount, 12
sendtype, 12
source, 9
status, 9
stride, 15
tag, 8, 9, 10

vector data type, 15
verbose

See enable verbose mode
Verbose field, 90
verbose mode, enable, 90
verify HP MPI installation, 20
View, 75
view

kiviat information, 82
process info, 78
trace file, 73

view options
change, 88
setting, 88

Viewing, 67
viewing

trace file, 73

W
working in interactive mode, 83

X
X-class server, 40

collective protocol, 40
point-to-point protocol, 40

XDB, 108
XMPI

Application Browser dialog,
83

buffer size dialog, 89
Confirmation dialog, 86
Datatype dialog, 80
display, 71
Dump dialog, 85
Express dialog, 86
Focus dialog, 79
Focus dialog message queue,

80
Focus dialog select process, 79
interactive mode, 71
Kiviat dialog, 82
main window, 73
monitor options dialog, 88
postmortem mode, 71, 72
rebuild Xresource database,

151
resource file, 151
run, 61
snapshot utility, 85
trace

application default
settings, 34

Trace dialog, 79, 85
Trace dialog View, 75
trace file generation, 50
Trace Selection dialog, 74
using, 71
using interactively, 83, 88
X resource file contents, 151

xmpi, 54, 61

XMPI Application Browser
snapshot utility, 85

XMPI Application Browser
fields

Selection, 84
XMPI Focus fields

cnt, 80, 81
comm, 79, 80
copy, 81
peer, 79
src, 80
tag, 79, 80

XMPI monitor options field
Automatic snapshot, 88
Monitor interval in second, 89

XMPI Trace dialog, 75
Express, 86

XPMI
Trace dialog, 75

Xresource database, 151

Y
yellow

See process colors
See process state

